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Research Vehicle (URV)i an asset of the Flight Dynamics Directorate, Wright
Laboratory, at Wright1 Patterson AFB. The following tasks were accomplished:
(1) a linear, state-space, small perturbation model was developed for both the
longitudinal and lateral-directional dynamics of the vehicle, and (2) pitch rate,j
roll rate, and yaw rate flight controllers were designed using classical and
multivariable feedback methods. The parameters of the linear, state-space, small
perturbation model were estimated from actual flight test data. Digital Datcom
was first used to estimate stability and control derivatives from the vehicle's
geometry. Maximum likelihood estimation was then used to adjust the Datcom
derivatives so that the estimated state time histories matched the actual state
timc h'stories recorded during flight. Pitch rate, roll raLe, and yaw rate
controller designs wL: deve1oped using classical feedback methodology charac-
terized by single-input, single-output, ,pen loop transfer function techniques.
The controller designs were repeated using the Linear Quadratic baussian withLoop Transfer Recovery (LQG/LTR) multivariable feedback approach.
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u perturbed forward velocity ft/sec

V side velocity ft/sec

VP velocity of the c.g. ft/sec

v perturbed side velocity ft/sec

W downward velocity (along Z) ft/sec

w perturbed downward velocity ft/sec

wf fuselage width ft

X, x distance along X ft

XSc location of aerodynamic center inches

xcg location of center of gravity inches

xac location of aerodynamic center in terms
of C

Xcg location of center of gravity in terms
of Z

X dimensional variation of X--force with 1/sec
speed

X2 dimensional variation of X-force with ft/sec 2

angle of attack

X~e dimensional variation of Xs-force with ft/sec2

elevator angle

Y, y distance along Y ft
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Symbol Definition Dimension

Y dimensional variation of Y-force with ft/sec 2

sideslip angle

Yp dimer.sional variation of Ys-force with ft/sec
roll rate

Yr dimensional varitation of Ys-force with ft/sec
yaw rate

Ysa dimensional variation of Ys-force with ft/sec2

aileron angle

Y ~r dimensional variation of Ys-force with ft/sec2

rudder angle

Z, z distance along Z ft

Zu  dimensional variation of Zs-force with 1/sec
speed

Za dimensional variation of Zs-force with ft/sec2

angle of attack

Za dimensional variation of Zs-force with ft/sec
rate of change of angle of attack

z q dimensional varaiation of Zs-force with ft/sec
pitch rate

Zje dimensional variation of Zs-force with ft/sec2

elevator angle

State Space Symbols

Symbol Definition Dimension

A nxn time invariant system dynamics matrix

B nxm time invariant, deterministic input mnatrix

C rxn measurement matrix

D rxm feedforward matrix

F nxs time invariant, process noise input matrix

Qo process noise iiicensity

Rf measurement noise intensity
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Smbol Definition Dim-nsion

Q, state weighting matrix

Rc  control weighting matrix

I identity matrix

0 zero matrix

e(t) error state time history

u(t) m-vector control input time history

w(t) wind state time history

x(t) n-vector state time history

5c(t) state estimate

y(t) r-vector measurment time history

(t) s-vector white Gaussian process noise

1(t) r-vector white Gaussian measurement noise

G.(s) augmented open loop transfer func-ion

Gj(s) integrator transfer function

Gp(S) open loop plant transfer function

J quadratic cost function

Kc  regulator gain matrix

Kf Kalman filter gain matrix

KLoQ(s) compensator transfer function

M error variance matrix

Mp Pmaximum peak overshoot to step input %

S system sensitity mag, db

tr rise time sec

t- settling time sec

Tv(s) Kalman filter transfer function
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Symbol Definition Dimension

TR(s) regulator transfer function

a. aileron time lag constant (first order)

ae elevator time lag constant (first order)

af flap time lag constant (first order)

ar rudder time lag constant (first order)

E expectation

Greek Symbols

Symbol Definition Dimension

p air density slug/ft3

PA mass density of airplane slug/ft3

rotational velocity, rad/sec

, heading angle (total, perturbed) rad

e, 0 pitch attitude angle (total, perturbed) rad

bank (roll) angle (total, perturbed) rad

also, phase angle or power spectral density rad or ft3

Y flight path angle rad

a angle of attack rad

I taper ratio

A sweep angle rad

6 sidPslip angle rad

Edownwash angle rad

A incremental value

6 control surface angle rad, deg

6a aileron angle rad, deg

6e elevator angle rad, deg

xxiv



Symbol Definition Dimension

Sf flap angle rad, deg

6r rudder angle rad, deg

r geometric dihedral angle rad

a sidewash angle rad, deg

a density ratio

a mean square value of gust velocity ft/sec

a frequency rad/sec

Wn undamped natural frequency rad/sec

Cdamping ratio

xxv



Subscripts

A airplane, aerodynamic

T thrust

x,y,z components along X,Y,Z respectively

i ith item or ideal

1 steady state

max maximum

b body

o output

a.c. aerodynamic center

c.g. center of gravity

s stability axes

com command

a aileron

e elevator

f flap

r rudder

dr dutch roll

p phugoid

sp short period

R roll

S spiral

ss steady state

g gust
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Acronyms

CGT Command Generator Tracker

FT Full Throttle

HF Half Flaps

HT Half Throttle

LQE Linear Quadratic Estimator

LQG Linear Quadratic Gaussian

LQR Linear Quadratic Regulator

LTR Loop Transfer Recovery

MAC Mean Aer" dynamic Chord

MGC mean Geometric Chord

MSL Mean Sea Level

QFT Quantitative Feedback Theory

PC Pitch Command

PD Pitch Doublet

RC Roll Command

RD Roll Doublet

YC Yaw Command

YD Yaw Doublet

ZF Zero Flaps
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Abstract

Research for this thesis centered on the Lambda Unmanned

Resea-h VCi~cle (bRV), an asset of the Flight Dynamics

Directorate, Wright Laboratory, at Wright-Patterson AFB. The

following tasks were accomplished:

(1) a linear, state-space, small perturbation model was
developed for both the longitudinal and lateral-directional
dynamics of the vehicle, and

(2) pitch rate, roll rate, and yaw rate flight controllers
were designed using classical and multivariable feedback methods.

The parameters of the linear, state-space, small perturbation

model were estimated from actual flight test data. Digital

Datcom was first used to estimate stability and control

derivatives from the vehicle's geometry. Maximum likelihood

estimation was then used to adjust the Datcom derivatives so that

the estimated state time histories matched the actual state time

histories recorded during flight. Pitch rate, roll rate, and yaw

rate controller designs were developed using classical feedback

methodology characterized by single-input, single-output, open

loop transfer function techniques. The controller designs were

repeated using the Linear Quadratic Gaussian with Loop Transfer

Recovery (LQG/LTR) multivariable feedback approach. Closed loop

performance, system robustness, and control power usage for the

resulting compensator designs were then compared and contrasted.
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1. Introduction

In 1987 the Flight Control Division (FIG) of the Flight

Dynamics Directorate, Wright Laboratory, began development of a

new unmanned research vehicle (URV) named Lambda. At that time,

FIG was flying two XBQM-106 strike and harassment drones modified

as flight control research vehicles. Although several successful

programs were completed using these vehicles, a new URV with the

following characteristics was desired:

- low cost,
- modular airframe,
- decoupled control surfaces,
- increased payload capacity, and
- horizontal take-off and landing (no launcher).

Hence, Lambda was acquired to provide FIG with an affordable,

flexible research vehicle for testing and demonstrating flight

control concepts, devices, and systems. A schematic of the

vehicle is provided in Figure 1.1.

Figure 1.1. Lambda Unmanned Research Vehicle.
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Since first flight in 1989, Lambda has flown as a remotely

piloted vehicle. Control commands from a ground operator are up-

linked to the URV via its telemetry system. Lambda has also been

instrumented to measure airplane parameters during flight [1].

These parameters include the following:

- roll, pitch, and yaw commands,
- roll, pitch, and yaw rates,
- roll and pitch attitudes,
- airspeed and altitude,
- angle of attack,
- angle of sideslip,
- longitudinal, lateral, and vertical accelerations, and
- aileron, elevator, rudder, and flap deflections.

A video camera onboard the vehicle transmits a real time picture

of the URV's flight.

The avionics system is being developed through supplemental

funding through the Unmanned Air Vehicle Joint Program Office

(UAV JPO) in Washington, D.C.. Integration of navigation,

mission planning, and flight management functions into a low cost

avionics system adaptable to a wide range of unmanned air vehicle

concepts is the UAV JPO's primary interest. The automatic flight

control system will be inserted in the electrical link between

the pilot commands and the control surfaces and will include the

control laws for vehicle response to pilot commands. The primary

functions required will be control augmentation and wings

leveling. Additional functions may include functional

integration of the navigation/flight management package to

include altitude hold, heading hold, control surface

reconfiguration, and out-of-sight maneuvering [2].
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1.1. Thesis Objectives

Since there is no wind tunnel data available for the Lambda

URV, a large degree of uncertainty exists in the stability and

control derivative data. The current mathematical model of the

aircraft relies on estimates of the aerodynamic derivatives

calculated with the Digital Datcom computer program [3]. These

derivatives are uncertain; hence, any control system designed

with the current model might not perform to FIG's satisfaction.

Due to the prohibitive cost of wind tunnel tests, and the fact

that Lambda has already been proven airworthy, Phase I of this

thesis will be to identify an accurate model of the aircraft from

actual flight data gathered in hnvember 1990. Digital Datcom

will be the primary tool used to predict the aerodynamic model

for Lambda. The model will then be compared to actual flight

test data and fine tuned to accurately predict the vehicle's

aerodynamic stability and control derivatives. The primary

benefit will be an accurate mathematical model of the Lambda URV

which can be used for future research projects. Phase I will

also validate the use of Digital Datcom for predicting the

aerodynamic models of unmanned air vehicles in the 150-250 pound

weight class.

Phase II of this thesis project will be to design flight

control systems for the Lambda URV that regulate pitch rate, roll

rate, and yaw rate. Although the flight control system that will

eventually be implemented will probably be one that regulates

attitudes (bank angle, heading angle, etc.), Wright Laboratory
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has specifically asked for rate controller designs. Rate

regulation is usually more difficult than attitude control and

tends to exploit the limitations of the methodologies being used.

This thesis will specifically look at the classical and

multivariable feedback approaches to rate controller design.

Other approaches, such as using quantitative feedback theory

(QFT) techniques, are also being investigated by the Flight

Dynamics Laboratory. The classical rate controller systems will

be designed using the methods described primarily in Roskam [4]

and McRuer [5]. The multivariable rate controllers will be

designed using the Linear Quadratic Gaussian with Loop Transfer

Recovery (LQG/LTR) approach. In 1986, Ridgely and Banda [6]

wrote an excellent handbook which details the LQG/LTR method-

ology. Finally, the classical and multivariable feedback rate

controllers will be compared and contrasted, thus providing

Wright Laboratory with valuable insights into the two design

approaches.

1.4



2. The Vehicle

A complete description of the geometric characteristics and

internal layout is presented in this chapter. The mass prop-

erties data obtained from the Flight Dynamics Laboratory is also

presented, but proved to be inaccurate. Changes to this data

were made during the development of the aerodynamic model and

will be presented in the next chapter.

2.1. Lambda Geometric Characteristics

Figure 2.1 presents a complete three view of the Lambda URV;

Table 2.1 provides an overview of the vehicle's geometric charac-

teristics. A summary of the overall layout will now be given.

The general wing layout for the Lambda URV is given in

Figure 2.2. The wing airfoil section was designed specifically

for the Lambda URV and is not a standard NACA airfoil. Figure

2.3 provides a cross section of the Lambda airfoil.

Lambda has a tail boom configuration with twin vertical

tails. Both the vertical and horizontal tail cross sections are

standard NACA 0012 airfoils. Figures 2.4 and 2.5 provide the

layouts for the vertical and horizontal planforms respectively.

Lambda has 10 decoupled flight control surfaces: 2 inboard

flaps, 2 outboard flaps, 2 ailerons, 2 rudders, and a split

elevator. However, for this phase of the project, all flap

deflections were synchronized, all aileron deflections coupled,

both rudder deflections synchronized, and both elevator

deflections synchronized.
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U

Figure 2.1. Three View Drawing of the Lambda URV.
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Table 2.1. Geometric Characteristics of the Lambda Vehicle.

WinQ Horizontal Vertical
Tail Tail

Area, sq ft 21.10 5.17 1.75
Span, ft 14.07 3.875 1.57
MGC, ft 1.51 1.33 1.125
MGC L.E.: F.S. 41.875 98.0 100.5

Aspect Ratio 9.38 2.90 1.45
Sweep Angle, l.e., deg 0 0 36.0
Taper Ratio 0.80 1.0 0.5
Thickness Ratio 0.182 0.12 0.12
Airfoil (Fig 2.3) NACA-0012 NACA-0012
Dihedral Angle, deg 0 0 N/A
Incidence Angle, deg 0 0 0

Aileron chord ratio inboard: 0.250 outboard: 0.189
Aileron span ratio 0.505 - 0.978

Elevator chord ratio 0.305 constant
Rudder chord ratio 0.250 average

Flap chord ratio
inboard flap 0.269 constant
outboard flap inboard: 0.269 outboard: 0.250

Flap span ratio
inboard flap 0.060 - 0.258
outboard flap 0.285 - 0.484

Fuselage Overall

Length, ft 5.90 9.50
Maximum Height, ft 1.09 2.76
Maximum Width, ft 0.87 14.07
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Figure 2.2. Lambda Wing Planform.

Figure 2.3. Lambda Wing Airfoil Cross Section.
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Figure 2.4. Lambda Vertical Tail Planform.
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Figure 2.5. Lambda Horizontal Tail Planform.
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The internal arrangement of the fuselage is provided in

Figure 2.6. Notice the large internal cargo bay dedicated to

future research hardware. Lambda is powered by an 18 HP

Herbranson engine which sits in the aft section of the fuselage.

Lambda has an internal bladder fuel tank that holds approximately

2 1/3 gallons of fuel (14 pounds). The vehicle also has two

battery power supplies located in the forward section of the

fuselage.

23
3 4 8 9 11 15 20

5 6 10 13 16 17 18 22

1. Video Camera 11. Throttle Servo 21. Alternator
2. 12v Power Supply 12. Brake Servo 22. Engine
3. Video Transmitter 13. Vertical Gyro 23. Propeller
4. 5v Power Supply 14. Rate Sensor
5. Telemetry Transmitter 15. Altitude Transducer
6. Receiver 16. Airspeed Indicator
7. 28v Battery Pack 17. Accelerometer
8. Decoder/Failsafe 18. Voltage Regulator
9. Steering Servo 19. Ignition System
10. Avionics Box 20. Fuel Tank

Figure 2.6. Lambda Internal Arrangement Schematic.
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2.2. Lambda Mass Properties Data

Very little mass property data was available on the Lambda

vehicle. Initially, only an overall weight and estimate of the

vehicle center of gravity location were provided by the Flight

Control Division for this project. In an effort to correctly

estimate the vehicle mass properties, the following was

accomplished:

1. obtained measurements of the overall vehicle and
established a reference coordinate frame,

2. obtained measurements for the position of individual
components and estimated center cf gravity locations for each,

3. estimated component weights from the limited data
available, and

4. iterated on component weight and center of gravity
estimates until overall vehicle weight and center of gravity was
appropriate.

Table 2.2 provides the resulting component weight and coordinate

data for Lambda. All weights followed by an asterisk are

strictly estimates based on known weights from similar components

and calculations accomplished by incorporating methods presented

in Reference 7. Component weights not followed by an asterisk

were later provided by the Flight Control Division. Vehicle

inertias, estimated from the weights data, are presented in

Table 2.3.

It will be shown later that in order to adequately estimate

flight performance, both the c.g. location and inertia data had

to be adjusted. Specifically, the overall vehicle c.g. location

was moved aft to Xcg = 47.2 inches for a vehicle weight of

203 pounds, and the roll inertia, Ixx, was doubled.
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Table 2.2. Lambda Component Weight and Coordinate Data.

COMPONENT WEIGHT X Y Z
(lbs) (in) (in) (in)

Right Wing 11.50 50.000 48.640 21.500
Left Wing 12.00 50.000 -48.640 21.500
Right Wing Root 4.50 * 51.000 14.500 21.500
Left Wing Root 4.50 * 51.000 -14.500 21.500

Fuselage 72.00 35.125 0.000 21.500
Left Tail Boom 5.00 * 69.125 23.250 21.875
Right Tail Boom 5.00 * 69.125 -23.2b0 21.875
Vertical Tail R 3.00 * 113.250 23.250 25.500
Vertical Tail L 3.00 * 113.250 -23.250 25.500
Horizontal Tail 7.50 * 112.000 0.000 22.250
Main Landing Gear

Spar 5.25 55.125 0.000 11.850
Left Wheel 4.38 55.125 -14.500 4.313
Right Wheel 4.38 55.125 14.500 4.313
Nose Gear 5.75 25.000 0.000 7.813

•* STRUCTURE 147.75
Engine 11.00 31.375 0.000 25.125
Alternator 7.00 24.500 0.000 25.125
Propeller 1.22 35.875 0.000 25.125
Throttle Servo 2.50 48.625 1.250 24.000
Ignition 0.50 * 59.625 0.625 24.000
Fuel Tank 0.66 63.750 0.000 18.000
** PROPULSION 22.88
Video Camera 1.00 * 8.500 0.000 15.000
12V Power Supply 1.00 * 14.250 0.000 19.250
5V Power Supply 0.25 * 17.000 1.750 18.000
Receiver 1.15 17.000 -1.500 18.000
Video Transmitter 0.25 * 16.375 1.625 21.750
Telemetry Trans. 0.25 * 16.375 -1.625 21.375
28V Battery Pack 2.00 * 19.750 -1.000 19.000
Decoder/Failsafe 2.00 * 23.250 0.000 24.000
Steering Servo 0.75 * 22.750 2.250 18.500
Avionics Box 12.00 31.500 0.000 16.500
Alt. Transducer 0.25 * 53.625 2.375 23.500
Brake Servo 0.75 * 48.875 -0.750 17.500
Rate Sensor 0.25 * 52.875 1.250 21.500
Accelerometer 0.25 * 52.250 -2.375 23.750
Airspeed Indicator 0.25 * 52.250 -1.875 21.250
Vertical Gyro 0.25 * 50.875 0.000 25.000
Voltage Regulator 1.00 58.875 -2.000 21.750
** FIXED EQUIPMENT 23.65

EMPTY WEIGHT 194.28 44.986 -0.130 20.222
Fuel 14.00 63.750 0.000 18.000

TAKE-OFF WEIGHT 208.28 46.247 -0.121 20.073
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Table 2.3. Lambda Inertia Estimation.

COMPONENT MASS Xi-Xcg Yi-Ycg Zi-Zcg
(slugs) (ft) (ft) (ft)

Right Wing 0.3575 0.1404 4.0638 0.1028
Left Wing 0.3730 0.1404 -4.0429 0.1028
Right Wing Root 0.1399 * 0.2238 1.2188 0.1028
Left Wing Root 0.1399 * 0.2238 -1.1979 0.1028
Fuselage 2.1759 -1.0992 0.0105 0.1028
Left Tail Boom 0.1554 * 1.7342 1.9480 0.1341
Right Tail Boom 0.1554 * 1.7342 -1.9270 0.1341
Vertical Tail R 0.1710 * 5.4738 1.9480 0.4362
Vertical Tail L 0.1710 * 5.4738 -1.9270 0.4362
Horizontal Tail 0.2331 * 5.3071 0.0105 0.1653
MG Spar 0.1632 0.5675 0.0105 -0.7013
MG Left Wheel 0.1360 0.5675 -1.1979 -1.3294
MG Right Wheel 0.1360 0.5675 1.2188 -1.3294
Nose Gear 0.1321 -1.9429 0.0105 -1.0378
Engine 0.3419 -1.4117 0.0105 0.4049
Alternator 0.2176 -1.9846 0.0105 0.4049
Propeller 0.0379 -1.0367 0.0105 0.4049
Throttle Servo 0.0466 0.0258 0.1146 0.3112
Ignition 0.0311 * 0.9425 0.0625 0.3112
Fuel Tank 0.0205 1.2863 0.0105 -0.1888
Video Camera 0.0233 * -3.3179 0.0105 -0.4388
12V Power Supply 0.0233 * -2.8387 0.0105 -0.0847
5V Power Supply 0.0078 * -2.6096 0.1563 -0.1888
Receiver 0.0357 -2.6096 -0.1145 -0.1888
Video Transmitter 0.0078 * -2.6617 0.1459 0.1237
Telemetry Trans. 0.0078 * -2.6617 -0.1250 0.0924
28V Battery Pack 0.0622 * -2.3804 -0.0729 -0.1055
Decoder/Failsafe 0.0466 * -2.0887 0.0105 0.3112
Steering Servo 0.0233 * -2.1304 0.1980 -0.1472
Avionics Box 0.3730 -1.4012 0.0105 -0.3138
Alt. Transducer 0.0078 * 0.4425 0.2084 0.2695
Brake Servo 0.0233 * 0.0467 -0.0520 -0.2305
Rate Sensor 0.0078 * 0.3800 0.1146 0.1028
Accelerometer 0.0078 * 0.3279 -0.1875 0.2903
Airspeed Indicator 0.0078 * 0.3279 -n.1458 0.0820
Vertical Gyro 0.0078 * 0.2133 0.0105 0.3945
Voltage Regulator 0.0311 0.8800 -0.1562 0.1237
Fuel 0.44 1.2863 0.0105 -0.1888

INERTIAS: (slugs/sq. ft.)

Ixx Iyy Izz Ixy Iyz Izx

Empty 16.235 25.930 40.218 -0.006 -0.003 0.698
Take-off 16.251 26.666 40.939 -0.001 -0.004 0.592
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2.3. Description of Flight Sensors

Table 2.4 lists the sensors (and their accuracies) onboard

the Lambda URV. Sensor data is continuously downlinked (sampled

every 1/60th second) to a ground station receiver via the

telemetry transmitter.

Table 2.4. Lambda Sensors.

Sensor Maximum Limits Accuracy

Roll Rate ± 40 deg/sec ± 1% full scale
Pitch Rate ± 40 deg/sec ± 1% full scale
Yaw Rate ± 40 deg/sec ± 1% full scale

Roll Attitude ± 90 deg ± 1% full scale
Pitch Attitude ± 60 deg ± 1% full scale
Angle of Attack ± 25 deg ± 1 deg
Angle of Sideslip ± 45 deg ± 1 deg

Airspeed 0 - 150 knots ± 2% full scale
Altitude 0 - 10,000 ft ± 100 ft

Longitudinal Accel ± 20 g's ± 2% full scale
Lateral Acceleration ± 3 g's ± 2% full scale
Vertical Acceleration ± 2 g's ± 2% full scale

Aileron Deflection ± 20 deg ± 1 deg
Elevator Deflection ± 20 deg ± 1 deg
Flap Deflection -10 to 30 deg ± 1 deg
Rudder Deflection ± 25 deg ± 1 deg

Roll Command ± 20 deg
Pitch Command ± 20 deg
Yaw Command ± 25 deg
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3. Linear State Space Perturbation Model

This chapter describes the methodology and tools used to

develop the linear, state space, small perturbation model for the

Lambda Unmanned Research Vehicle. There exist several means by

which to estimate a model for the Lambda URV, each varying in

cost and time to accomplish. The most direct method is to do

wind tunnel testing. Since the budget for the Lambda research

vehicle is limited, wind tunnel modeling could not be accom-

plished. Lambda was designed with inherent stability and is

flown quite satisfactorily with open loop controls. Therefore,

the approach adopted to estimate the vehicle dynamics was as

follows:

Step 1. Develop a conventional, analytical math model for Lambda
and use empirical methods to estimate the model parameters.

Step 2. Conduct flight tests and collect time history
measurements of the state and control variables.

Step 3. Use the flight test data to validate and fine tune the
math model developed in Step 1.

Section 3.1 summarizes the development of an analytical,

linear, state-space perturbation model for the Lambda URV.

Section 3.2 provides a brief description of the flight tests

accomplished with the Lambda URV in November 1990. Section 3.3

discusses the empirical methods used to estimate the model

parameters, specifically, the vehicle's stability and control

derivatives. Given the airplane geometry and mass properties,

these methods, based on data from past aircraft of similar

performance and configuration, predict the dimensionless airplane
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stability and control derivatives. Section 3.4 details the para-

meter estimation techniques incorporating the flight test data

which were used to tune the airplane math model. Section 3.5

then discusses the modeling of the flight control actuators and

the addition of their dynamics into the state space model. The

end product, therefore, is a linear state space perturbation

model for the Lambda URV which estimates the state perturbation

variables for a given set of pilot command inputs. Finally,

Section 3.6 gives a general discussion of the overall model and

outlines approaches that can be considered to improve the

accuracy of this model.
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3.1. Derivation of the General State Space Model

Consider an airplane whose motion is tracked with respect to

an inertial reference frame as in Figure 3.1. Newton's Second

Law in terms of conservation of both linear and angular momentum

about the vehicle center of gravity can be expressed as

follows [4]:

SV PA d' dV P dV + f S F dS (3.1)
dt dt

(linear momentum) (applied forces)

d l i' X PA d-' dV = Xv ?' x PAO dV + fs S' x F dS (3.2)
dt dt

(angular momentum) (applied moments)

where fdv and fsdS represent volume and exterior surface

integrations respectively.

FdS

z
rp

Y,

XYZ Body Fixed X
X'Y'Z Inertial

Figure 3.1. Airplane Coordinate System.
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The following assumptions are now made [4]:

1. The earth's rotation is negligible, therefore, X'Y'Z' is a
fixed coordinate system.

2. The earth's gravitation is uniform and always points in the

Z' direction. This is called the "flat earth" assumption.

3. The time span is short, approximately 30 to 60 seconds.

4. The total mass of the airplane is constant with time.

5. The mass distribution of the airplane is constant with time.
This is called the "rigid body" assumption.

6. The coordinate system XYZ is a rotating coordinate system and
has its origin at the airplane center of mass.

7. The airplane is symmetrical about the X-Z plane; therefore,
=1Y =0 .Ixy=Ixz=0

From these assumptions, the nine equations of motion for a rigid

airplane can be derived and are given in Table 3.1.

Table 3.1. Airplane Eauations of Motion.

Force Equations:

m(U - VR + WQ) = -mg sinO + F Ax + FTx

m(V? + UR - WP) = mg sint cosO + FAy + FTy

m(W - UQ + VP) = mg cost cosO + FAz + FTz

Moment Equations:

IxxP - IxzR - IxZPQ + (Izz - I )RQ = LA + LT

I Q + (Ixx - Izz)PR + Inz(P 2 
- R 2) = MA + MT

Izzi - Ixzi + (It, - I,,)PQ + IxzQR = NA + NT

Kinematic Equations:

P = I - T sinO

Q = 0 cost + T cosO sint

R = T cose cost - 0 sint
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If steady state flight conditions (accelerations and angular

rates equal to zero) are assumed, the general airplane equations

of motion reduce to those given in Table 3.2 where the subscript

1 is used to indicate that the flight condition is steady.

Table 3.2. Airplane Steady State Equations of Motion.

Steady State Force Equations:

m(-VIRl + WIQj) = -mg sinO1 + FAxI + FTx1

m(U 1 RI - WIPI) = mg sint I cose 1 + FAyl + FTy I

m(-UIQ I + VIP) = mg cost i cos 1 + FAz I + FTz I

Moment Equations:

-IxzPIQ1 + (Izz - IYY)RIQi = LA, + LI

(Ixx - Izz)PIRI + Ixz(P 1  - R1 ) = MAI + MT1

(IY - Ixx)PIQI + IxzQIRl = NAI + NTI

Kinematic Equations:

Pi = - '?' sinO1

Q= 01 coso1 + ?I cosO1 sin§1

RI= i cosO 1 cosoI - 61 sinti

Now if the motion variables are perturbed from the steady

state flight condition, a set of linear perturbation equations

about a known steady state condition can be determined. Assuming

the initial steady state condition to be rectilinear, level

flight, the perturbed state equations of motion relative to this

steady state can be extracted (Table 3.3). Steady rectilinear

flight is defined as:

a) no initial side velocity,
b) no initial bank angle, and
c) no initial angular velocities.
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By perturbing the aerodynamic and thrust force and moment

expressions and linearizing about a steady state flight condi-

tion, the small perturbation equations of motion as given in

Table 3.4 are obtained. Unsubscripted variables are the

perturbed quantities.

Table 3.3. Airplane Perturbed Equations of Motion.

Perturbed Force Equations:

m(u + W1q) = -mgO cosO1 + AX + fTx

m(v + Ur - W1P) = mg4 cosO1 + fAY + fTY

m(w - U1q) = -mg 1 + fAz + fTz

Perturbed Moment Equations:

IIXx- Irz = 1A + 1 T

Iq = mA + MT

IZZt- Ixzp = nA + nT

Perturbed Kinematic Equations:

p = ' - 4 sin 1

q=

r = *cosO1

Finally, these equations can readily be rearranged into the

state space format given in Table 3.5 with the new dimensional

stability derivatives defined in Tables 3.6 and 3.7. Tables 3.5,

3.6, and 3.7 form the basis of the airplane math models to be

used henceforth. Figure 3.2 defines the geometry used for the

math models.
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Table 3.4. Airp~lane Small Perturbation Eguations of Motion.

Longitudinal Small Perturbation Equations:

=-gecosO 1 + xUu + XTu u+ Xa a + X~e 6 e

-1 Ulq = -gOsinO1 + Zuu + Z.a + z&&1+ zqq+ z8 e 6e

=Mu~ u + MTu U + Maa + M~a a + M6 & + Mq q + Mbe 6 e

Lateral-Directional Small Perturbation Equations:

v+ U~r = g~cosO, + YO + Yp P + Yr. r + Y~ 6a + Y6r 6 r

p- Alt = Lo 6 + LP p + Lr r + L~a 6a + L~r Sr

t -Blp =No 6+ NT,99+ Np+ Nrr +N 6a 4a+ N~r 6r

Al = IZ/x B1  z/z

xb

Vpz b aarctan(w/U)

Yb J3=arcsin(v/V)

xb

Figure 3.2. Airplane Geometry Used for the Airplane Math Model.
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Table 3.5. Airplane State Space Perturbation Model.

Longitudinal Equations of Motion:

UUX 0 -gcosO) 1  (u

Z., -U,+z-gsinO 1

U1-z& UIz, U1-z&1

mu _zj I+_+_ZO I~qm~i____q -M,,gsin61
U1 -zd U1 -Zd U1_Zdk

L 0 0 1 -0Jf).

X6e Xjf

-6 4fe
Ul-z& U1-z&,

+M 6e+&-Ze M f 4zf f

Lateral-Directional Equations o oin

3 QCfOSEO1  r
U1  U1  U1  U1 (

L+A NP L +A 1 N Lr±Aillr 0
1-B1 A1  l-B1A1  1-B 1 A1

0 1 0 0 0

t N +BJL~ N +B LI 0 N±BL, 0 r

1-B1 A1  1-B 1 Al 1-B1 A,

4,0 0 0 1 0

U1  U1

4,+AlN.L 'A-Nr(

I-BIAi 1-BA {:
+o 0 6

___ ilLiar±-B1L6 dr
1-B1A 1-B1A1

0 0
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Table 3.6. Airplane Longitudinal Dimensional Stability
Derivatives.

X, -- lS(C +2CD,)_ (1/sec) ma=-,--Ca (/e 2)

mUl IYY

!C_ = (1/sec)
m 2 IyyU1

X~e = -s--6 (fSCsec 2 ____95C2 (1/sec)
m 2 IyyU1

Zu -laS(C-LuL2-CL1) (1/sec) Mse = g1 ScC- 6 e (1/sec2

Z. -lS(CL~,+l) (ft/sec) Mu _q Sc(C u2Cmll (1/ft-
m IYYU1  sec)

=& - qlSCCL& (ft/sec)
2 mU1

2m~2
Z6 e = - -L~e (ft/sec 2

m
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Table 3.7. Airplane Lateral-Directional Dimnensional Stability
Derivatives.

yo=_qSy (ft/sec ) Lba Q-P~sbt4a (1/sec)
m x

Yp = _qSb%3  (ft/sec) Lsr ~-h-sbc 8r (1/sec)2
2mU1  x

Yr = 1 -qlbYr (ft/sec) N _qlhgC (1/sec 2
2mU1  z

2 2ZU

Y5= q1$scY5 8  (ft/sec 2) Nr = qSb 2C n (1/sec)
m 21ZZU1

Lor = _qSYi (f/sec Nra = qlSb Cr (1/sec )

L= 21Sb2C I (1/sec) N.5a -1q-grs (1/sec 2)
2 xxu Izz

Lr = 9lb2C (1/sec)
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3.2. Description of Flight Tests

Flight testing of the Lambda URV for the Flight Dynamics

Laboratory was performed by the contractor Lear-Siegler. Flights

were conducted at Jefferson Proving Grounds in southern Indiana.

The two flight tests conducted for gathering the data used for

this thesis occurred on 20 and 21 November, 1990. Tables 3.8 and

3.9 give a summary of the maneuvers and pertinent conditions

during each of those tests. During both tests neither stability

augmentation nor feedback control was implemented in the flight

control system. Pilot commands were directly uplinked to the

vehicle and relayed to the actuators.

Table 3.8. Flight Test #1 Information.

Date: 20 November 1990
Location: Jefferson Proving Grounds, Indiana
Field Elevation: 850 MSL
Temperature: z60 degrees Farenheit

Vehicle Weight: 203 lbs (9 lbs fuel)
Approximate Center of Gravity Location: 0.35 MAC

Maneuver Flaps Throttle Speed
kts

Pitch Doublet Half Full 61
Pitch Doublet Zero Full 90
Pitch Doublet Zero Half 81
Pitch Doublet Half Half 64

Roll Doublet Zero Full 92
Roll Doublet Zero Half 75
Roll Doublet Half Full 76
Roll Doublet Half Half 66

Yaw Doublet Zero Full 85
Yaw Doublet Zero Half 71
Yaw Doublet Half Full 66
Yaw Doublet Half Half 58
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Table 3.9. FliQht Test #2 Information.

Date: 21 November 1990
Location: Jefferson Proving Grounds, Indiana
Field Elevation: 850 MSL
Temperature: -60 degrees Farenheit

Vehicle Weight: 203 lbs (9 lbs fuel)
Approximate Center of Gravity Location: 0.35 MAC

Maneuver Flays Throttle Speed
kts

Pitch Doublet Zero Full 97
Pitch Doublet Zero Half 78
Pitch Doublet Half Half 71

Roll Doublet Zero Full 98
Roll Doublet Zero Half 75
Roll Doublet Half Half 69

Yaw Doublet Zero Full 94
Yaw Doublet Zero Half 79
Yaw Doublet Half Half 70

The actual flight test data consisted of 25 parameters

continuously sampled during the flight. The sampling rate on the

data was 60 hertz. The Flight Dynamics Laboratory truncated the

entire set of data collected during a flight into files that

consist of 10 seconds of actual flight test data for each

maneuver. Each data set usually begins 1-2 seconds before the

onset of a maneuver. Table 3.10 lists the sensors used on the

Lambda URV and their corresponding accuracy. The throttle

setting sensor failed on both flight tests.
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Table 3.10. Accuracy of Sensors Onboard the Lambda URV.

Sensor Maximum Limits Accuracy

Roll Rate ± 40 deg/sec ± 1% full scale
Pitch Rate ± 40 deg/sec ± 1% full scale
Yaw Rate ± 40 deg/sec ± 1% full scale

Roll Attitude ± 90 deg ± 1% full scale
Pitch Attitude ± 60 deg ± 1% full scale
Angle of Attack ± 25 deg ± 1 deg
Angle of Sideslip ± 45 deg ± 1 deg

Airspeed 0 - 150 knots ± 2% full scale
Altitude 0 - 10,000 ft ± 100 ft

Longitudinal Accel ± 20 g's ± 2% full scale
Lateral Acceleration ± 3 g's ± 2% full scale
Vertical Acceleration ± 2 g's ± 2% full scale

Aileron Deflection ± 20 deg ± 1 deg
Elevator Deflection ± 20 deg ± 1 deg
Flap Deflection -10 to 30 deg ± 1 deg
Rudder Deflection ± 25 deg ± 1 deg

Roll Command ± 20 deg
Pitch Command ± 20 deg
Yaw Command ± Z5 deg
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3.3. Estimation of the State Space Model Prior to Incorporation

of Flight Test Data

Once the vehicle geometry is known and the mass properties

estimated, the first step in deriving the state space model

(Table 3.5) is to estimate the dimensionless stability deriv-

atives. Since most airplanes have wide flight envelopes, the

dimensionless stability derivatives are not constant. They

typically vary throughout the flight envelope, mainly as a

function of Mach and Reynold's number. However, the flight

envelope for the Lambda URV is very limited:

stall speed = 54 knots, no flaps

= 45 knots, with flaps

take-off speed = 60-70 knots

landing speed = 50-70 knots

maximum speed 1 100 knots

ceiling < 10,000 feet

Therefore, it is reasonable to assur that for a given set of

mass properties, the change in dimensionless stability

coefficients throughout the flight envelope will be

insignificant.

One method of estimating dimensionless stability derivatives

is through the use of the USAF Stability and Control Datcom [3].

The fundamental purpose of the USAF Stability and Control Datcom

is to provide a systematic summary of methods for estimating

stability and control characteristics in preliminary design

applications. Datcom is somewhat voluminous and contains various

levels of estimation depending on the level of complexity the
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engineer is willing to attempt. Part VI of the Roskam Design

Texts [8] is an excellent rework of the Datcom manuals condensed

in a form which can be easily used by the engineer.

The bulk of the estimation of the dimensionless stability

and control derivatives, however, was accomplished through the

use of Digital Datcom [9]. Digital Datcom is a computer program

developed by the McDonnel Douglas Corporation for the Flight

Dynamics Laboratory that calculates static stability, high-lift

and control device, and dynamic-derivative characteristics using

the methods contained in Sections 4 through 7 of the USAF Stabil-

ity and Control Datcom. The computer program also offers a trim

option that computes control deflections and aerodynamic data for

vehicle trim at subsonic Mach numbers. The program requires the

user to construct input decks that completely describe the

vehicle geometry, center of gravity location, airfoil data,

flight conditions, and range of control surface deflections.

A complete set of stability and control derivative esti-

mations using the Datcom program was accomplished for the 12

flight conditions corresponding to the first day of flight tests.

All estimations were made with the vehicle weight at 203 pounds

and center of gravity location at 48.217 inches (35% of the mean

aerodynamic chord). Since Datcom calculates stability and con-

trol derivatives over a range of angle of attacks, the trim

condition for each flight maneuver had to be determined; the

corresponding true angle of attack calculated; and the respective

stability and control derivatives obtained from the Datcom
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output.

Table 3.11 lists the entire set of estimated dimensionless

stability and control derivatives for each of the 12 flight

maneuvers from the first day of flight testing. These were

obtained by using Datcom and the methods outlined above. A final

value for each derivative was selected by taking an average of

the derivatives from the 12 different flight conditions. These

final dimensionless derivatives are given in Table 3.12.

Using the dimensionless derivatives in Table 3.12, the

dimensionless stability and control derivatives can be calculated

for each flight condition by using the equations given in Tables

3.6 and 3.7. The vehicle geometric characteristics and inertia

values required for these calculations were presented in Tables

2.1 and 2.3 respectively. Once these dimensional derivatives are

calculated, the perturbation equations of motion presented in

Table 3.5 can be constructed. An example of the resulting

perturbation equations for the first pitch doublet on the first

flight test is presented in Table 3.13.

Two state space models, one for the longitudinal equations

of motion and one for the lateral-directional equations of

motion, can be constructed as follows:

Longitudinal: Lateral-Directional:

k=Ax+B6 k=Ax+B6
(3.3)

y=Cx+D6 = x+ D 6
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where,

x a n vector of state variables

6 M m vector of control inputs

A n x n systems dynamics matrix

B n x m input matrix

yM* full state measurement vector

C n x n identity matrix

D a n x m zero matrix

x, 6, A, and B were defined in Table 3.5 for both the

longitudinal and lateral-directional cases. By choosing C to be

the identity matrix, the output of the state model will simply be

the states themselves.
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Table 3.11. Dimensionless Stability and Control Derivatives for
the First Flight Test (X-g=48.217 inches, W=203 pounds).

F1PI FlP2 F1P3 FIP4
PDHFFT PDZFFT PDZFHT PDHFHT

W, lb£ 203 203 203 203
S, in 3038.4 3038.4 3038.4 3038.4
b, in 168 168 168 168
I,, in 60 60 60 60
Z,, in 2 2 2 2
Xcg , % chord 0.35 0.35 0.35 0.35
V, fps 104 152 136 108
p, slug/ft 0.002240 0.002240 0.002240 0.002240
q, psf 12.11878 25.88687 20.72384 13.06892
M 0.094 0.137 0.123 0.097
RN/ft 628595 921394 825159 652142
CL1  0.793879 0.371649 0.464240 0.736162
a, deg 1.14 -0.15 0.82 0.53

(all dimensionless derivatives in per degree)
CLa 0.1015 0.102 0.1027 0.101
Ca -0.01373 -0.01312 -0.01369 -0.01371
CDu 0 0 0 0
CLu 0.000123 0.000124 0.000124 0.000122
CMU 0 0 0 0
CDq 0 0 0 0
CLq 0.1113 0.1132 0.1127 0.1115
C -0.2549 -0.2584 -0.2574 -0.2553
CDa 0 0 0 0
CL& 0.03499 0.03665 0.03551 0.03493
CM -0.1048 -0.1098 -0.1064 -0.1046
Cy#V  -0.00625 -0.00625 -0.00625 -0.00625
Cy0 -0.00763 -0.00763 -0.00763 -0.00763
Cto -0.00026 -0.00023 -0.00025 -0.00024
Co 0.001696 0.001672 0.001679 0.001693
yp -0.00003 -0.00002 -0.00002 -0.00002
Cp -0.00917 -0.00933 -0.00935 -0.00913

-0.00069 -0.00518 -0.00065 -0.00060
Cyr 0.004464 0.004468 0.004465 0.004466

Ctr 0.001689 0.001239 0.001602 0.001461
Cnr -0.00159 -0.00159 -0.00159 -0.00159
CL~e 0.009 0.0089 0.0089 0.009
CKe -0.02484 -0.02439 -0.0245 -0.02478
Cy6a  0 0 0 0
Cta 0.004552 0.004552 0.004552 0.004552
Cna -0.00026 -0.00019 -0.00024 -0.00022
Cy~r 0.005 0.005 0.005 0.005

CtWr 0.000023 0.000064 0.000033 0.000043
Cnr -0.00167 -0.00163 -0.00164 -0.00167
CDf 0.00159 0.00142 0.00154 0.00151
Ct8 f  0.0245 0.0248 0.0247 U.0245

C~f -0.00422 -0.00438 -0.00439 -0.00361
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Table 3.11. Continued.

FIR1 FlR2 FIR3 FlR4
RDZFFT RDZFHT RDHFFT RDHFHT

W, lb 203 203 203 203
S, in 3038.4 3038.4 3038.4 3038.4
b, in 168 168 168 168
i,, in 60 60 60 60
Z,, in 2 2 2 2
Xcg , % chord 0.35 0.35 0.35 0.35
V, fps 156 127 129 il
p, slug/ft3  0.002240 0.002240 0.002240 0.002240
q, psf 27.26727 18.07173 18.64540 13.80506
M 0.141 0.114 0.116 0.1
RN/ft 945964 768852 781137 673641
CL1  0.352835 0.532370 0.515990 0.696907
a, deg -0.35 1.53 -1.85 0.12

(all dimensionless derivatives in per degree)
CLa 0.1024 0.1021 0.09901 0.1006
Ca -0.01451 -0.01123 -0.01323 -0.0132
Cou 0 0 0 0
CLu 0.000124 0.000122 0.000122 0.000122
CMu 0 0 0 0
CDq 0 0 0 0
CLq 0.1125 0.1114 0.1124 0.1117

C -0.2563 -0.2541 -0.2571 -0.2557
CD& 0 0 0 0
CL& 0.0344 0.03174 0.03568 0.03592
CM& -0.103 -0.09506 -0.1069 -0.1076
CyOv  -0.00625 -0.00625 -0.00625 -0.00625
Cy0 -0.00763 -0.00763 -0.00763 -0.00763
CIO -0.00022 -0.00027 -0.00018 -0.00023
Co 0.001671 0.001683 0.001682 0.001691
Cyp -0.00002 -0.00003 -0.00001 -0.00002
Cip -0.00932 -0.00937 -0.00897 -0.00911
Cn -0.00048 -0.00075 -0.00026 -0.00054
Cyr 0.004468 0.004462 0.004470 0.004467
Ctr 0.001164 0.001868 0.000579 0.001309
Cnr -0.00159 -0.00159 -0.00159 -0.00159
CLe 0.0089 0.0089 0.0089 0.009
CMe -0.02437 -0.02456 -0.02449 -0.02432
Cy~a 0 0 0 0
C(Sa  0.004552 0.004552 0.004552 0.004552
Cna -0.00022 -0.00021 -0.00009 -0.00020
Cy~r 0.005 0.005 0.005 0.005
CI6r 0.000070 0.000011 0.000117 0.000055
Cnr -0.00163 -0.00165 -0.00165 -0.00164
CDf 0.0014 0.00164 0.00118 0.00146
CL~f  0.0248 0.0247 0.0247 0.0246
CMf -0.00312 -0.00358 -0.00423 -0.00436
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Table 3.11. Continued.

FlYl FIY2 FIY3 FIY4
YDZFFT YDZFHT YDHFFT YDHFHT

W, 203 203 203 203
S, in 3038.4 3038.4 3038.4 3038.4
b, in 168 168 168 168
I,, in 60 60 60 60
z,, in 2 2 2 2
Xcg, % chord 0.35 0.35 0.35 0.35
V, fps 144 119 ii 99
p, slug/ft3  0.002240 0.002240 0.002240 0.002240
q, psf 23.23365 15.86669 13.80506 10.98153
M 0.13 0.108 0.1 0.089
RN/ft 874300 722782 672617 597882
CL1  0.414091 0.606355 0.696907 0.876094
a, deg 0.3 2.3 0.12 2.01

(all dimensionless derivatives in per degree)
Cta 0.1023 0.1033 0.1006 0.1011
Ca -0.01333 -0.01388 -0.01332 -0.01118
CDu 0 0 0 0
CLu 0.000124 0.000124 0.000122 0.000122
CMU 0 0 0 0
CDq 0 0 0 0
CLq 0.1129 0.112 0.1106 0.1099
C -0.2581 -0.2564 -0.2527 -0.2512
CD& 0 0 0 0
CL& 0.03622 0.03506 0.03293 0.03101
Cd -0.1085 -0.105 -0.09864 -0.09288
CyOv  -0.00625 -0.00625 -0.00625 -0.00625
CYO -0.00763 -0.00763 -0.00763 -0.00763
Ctp -0.00024 -0.00029 -0.00023 -0.00028
Cn 0.001675 0.001687 0.001692 0.001699
Cyp -0.00002 -0.00003 -0.00002 -0.00003
Ctp -0.00934 -0.00939 -0.00911 -0.00921
Cn -0.00058 -0.00086 -0.00054 -0.00081
Cyr 0.004467 0.004458 0.004467 0.004459
CIr 0.001407 0.002159 0.001309 0.002015
Cnr -0.00159 -0.00158 -0.00159 -0.00158
CL6e 0.0089 0.0089 0.009 0.009
CMe -0.02444 -0.02463 -0.02467 -0.02449
Cy6a  0 0 0 0
Ct6a 0.004552 0.004552 0.004552 0.004552
Cna -0.00022 -0.00033 -0.00020 -0.00031
Cy6r 0.005 0.005 0.005 0.005
Ctr 0.000050 -0.00001 0.000055 -0.00000
Cfr -0.00164 -0.00166 -0.00166 -0.00166
CD6f 0.00148 0.00174 0.00146 0.00171
CL6f  0.0247 0.0246 0.0246 0.0245
C"f -0.0044 -0.00361 -0.0031 -0.00357
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Table 3.12. Averacte Dimensionless Derivatives for the First
Flight Test (X,=48.217 inches, W=203 pounds).

AVERAGE DIMENSIONLESS COEFFICIENTS OVER 12 FLIGHT CONDITIONS.

1/deg 1/rad 1/deg 1/rad

CLa 0.1016 5.8184 CLe 0.0089 0.5123
Ca -0.0132 -0.7550 CMKe -0.0245 -1.4060

CDu 0.0 0.0 Cysa 0.0 0.0

CLu 0.0001 0.0071 C16a 0.0045 0.2608

CMu 0.0 0.0 Cna -0.0002 -0.0131

CDq 0.0 0.0 Cy5 r  0.0050 0.2865
CLq 0.1118 6.4081 CL6r 0.0001 0.0024
CMq -0.2556 -14.647 Crr -0.0017 -0.0945

CD& 0.0 0.0 CD~f 0.0015 0.0866
CL& 0.0346 1.9817 CL8f 0.0246 1.4119
Cmd -0.1036 -5.9357 CM8f -0.0039 -0.2224

Cyo v -0.0063 -0.3584
CyBo -0.0076 -0.4372
Cto -0.0002 -0.0143
C48 0.0017 0.0965

CYP -0.0001 -0.0016
CIp -0.0092 -0.5292
Cnp -0.0010 -0.0574

Cyr 0.0045 0.2559
Ckr 0.0015 0.0850
Cnr -0.0016 -0.0913
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Table 3.13. Calculation of Dimensional Derivatives and State
Space Model for the First Pitch Doublet. Flight Test #1.

weight W 203 lbs
wing area S 21.1 sq ft
wing span b 14.07 ft
mean aerodynamic chord c 1.51 ft
airspeed U 104 fps 3
density p 0.002240 slugs/t
inertias Ixx 16.251 slugs-ft-

Iyy 26.666 slugs-ft2

Izz 40.939 slugs-ft2

Ixz 0.5922 slugs-ft2

trimmed lift coeffi-'nt CLI 0.793879
trimmed drag roefficient CDI 0.029
trimmed moment coefficient CMl 0
trimmed thrust coefficient CTx1 0

trimmed thrust moment coefficient CMx1 0

Nondimensional Derivatives: Dimensional Derivatives:

Longitudinal Derivatives:

CMU 0 Mu  0 rad/ft sec
CMa -0.75501 M a  -10.9323 1/sec2

CM& -5.93574 M& -0.62394 1/sec
CMq -14.6467 Mq -1.53962 1/sec
CMTu 0 MTu 0 rad/f sec
CKTa  0 MTa 0 1/sec
CLU 0.007071 Zu  -0.62140 1/sec
CLa 5.818434 Za -236.952 ft/sec2

CL& 1.98167 Z, -0.58296 ft/sec
CLq 6.408055 Zq -1.88510 ft/sec
CDa 0 Xa  32.17 ft/sec

CDu 0 Xu  -0.02259 1/sec
CTx u  0 XTu 0 1/sec 2
CL6e 0.512319 Zbe -20.7604 p/sec
CDSe 0 X~e 0 ft/sec
CMSe -1.40603 M~e -20.3589 1/sec2

CLPf 1.411863 Z~f -57.2122 ft/sec2
CD6f 0.086564 XMf -3.50779 ft/seF
C9f -0.22235 MV -3.21956 1/sec
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Table 3.13. Continued.

Nondimensional Derivatives: Dimensional Derivatives:

Lateral-Directional Derivatives:

Cti-0.01431 LO -3.'6807 1/sec2
Cp-0.52922 Lp-7.92542 1/sec
tr0.084997 Lr 1.272887 1/sec2

CISa 0.260844 LSa 57.74793 1/sec 2
Ct~r 0.002439 L~r 0.539967 1/sec 2

Cn#0.096543 No8.484363 1/sec
np-0.05738 N p -0.34110 1/sec

Cnr -0.09132 Nr -0.54286 1/sec
Cna -0.01311 N8 a -1.15212 1/sec 2
Cnr -0.09453 N~r -8.30745 1/sec 2
Cp-0.43716 YO-17.7148 ft/sec
CP-0-00155 yp-0.00424 ft/sec
Cr0.25585 Yr 0.701317 2 ft/sec

Cysa 0 Ya0 ft/sec 2
CY8 r 0.L.86478 Y~r 11.60881 ft/sec

Al 0.03644
B1  0.01446
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Table 3.13. Continued.

STATE SPACE COEFFICIENTS:

Longitudinal: 01 = 0 rad

u -0.02259 32.17 0 -32.17 u
= -0.00594 -2.26569 0.976400 0 a

0003707 -9.51866 -2.14884 0q

0 1 0

03.507791
+ -0.19850 -0.54705 i e

-20.2350 -2.87823 6f
0 0

Lateral-Directional:

-3-0.17033 -0.00004 0.309365 -0.99325 0-/
-2.86040 -7.94204 0 1.25377 0 p
0 1 0 0 0
8.44299 -0.45599 0 -0.52473 0
0 0 0 1 0

0 0.11162-
57.7364 0.23736 6a

+ 0 0
-0.31694 -8.30402 6

0 0
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3.4. Inclusion of Flight Test Data in Parameter Estimation

The state time responses using the perturbation model

derived in Section 3.3 can now be plotted against the actual

perturbation time reEponses from the flight test data by using

the following approach:

1. For the input time history vector U, the actual control sur-

face deflection time histories (specifically, the perturbation

deflections from an initial steady state value) will be used.

The perturbation deflection values are obtained by assuming the

airplane is at a steady state value at the beginning of the time

history; therefore, the first value in the control deflection

time history vector is subtracted from all the rest of the values

in the vector.

2. The actual perturbation time responses are calculated from

the flight test data by subtracting from the entire response time

history vector the steady state value for the parameter before

the maneuver.

Plots of the time histories of each of the data parameters

for every flight maneuver were generated. Appendix A contains a

complete set of plots for the first pitch doublet on the first

day of flight testing. Inspection of the flight test data for

all 21 maneuvers reveals the following:

1. The measurement data is corrupted by noise.

2. The longitudinal and lateral acceleration data is heavily

noise corrupted and possibly unusable.
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3. Some of the rate data is incomplete due to the sensors

reaching their maximum limits.

4. The angle of attack, pitch attitude, and angle of sideslip

data provided by the Flight Control Division had sign inversions.

These were corrected for the plots presented in Appendix A.

5. The longitudinal time responses are characterized by two

modes: the short period mode time response and the phugoid mode

time response. It was observed from the angle of attack and

pitch rate time response plots that the frequency, damping ratio,

and magnitude of the short period time responses are not

accurately modeled. It appears that the output magnitude needs

to be decreased, frequency increased, and damping ratio reduced.

Observing the speed and pitch attitude time responses indicates

that the phugoid mode is not modeled correctly.

6. The lateral-directional time responses are characterized by

three modes: the roll mode, spiral mode, and dutch roll time

responses. The roll rate and roll attitude time responses show

that the roll mode time constant is inaccurately modeled. The

angle of sideslip and yaw rate time responses indicate that the

magnitude, frequency, and damping of the dutch roll time

responses are not modeled accurately. It is difficult (if not

impossible) to tell from the plots how accurately the spiral mode

is modeled.

7. Overall, the general shapes and trends of the time responses

of the perturbation model resemble the actual time responses from

the flight test data.
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Therefore, by focusing on the short period and phugoid approxi-

mations for the longitudinal equations of motion and the roll and

dutch roll approximations for the lateral-directional equations

of motion, the appropriate dimensionless derivatives were system-

atically varied to obtain appropriate overall time response

characteristics. The procedure for accomplishing this systematic

variation in dimensionless derivatives will now be discussed.

Many different approaches exist for identifying stability

and control derivatives from flight test data. The more

successful approaches involve maximum likelihood estimation

techniques which incorporate Kalman filters in the routines to

provide state and measurement estimates [10, 11,12, 13]. These

methods often include techniques such as constrained parameter

optimization and a priori parameter weighting (often based on

wind tunnel data) [10]. Good parameter estimates can be directly

obtained from maximum likelihood techniques, especially if the

following are accomplished prior to flight testing:

1. Compilation of a thorough description of the data acquisition

system (12]. Sensor noise should be completely characterized

(through power spectral density analysis) and any biases

identified. The effects of data sampling rates and record

lengths should also be researched.

2. Turbulence during flight testing needs to be addressed [12].

The parameter estimation techniques to be used should account for

the effect of added measurement noise due to atmospheric

turbulence.
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3. A structural mode analysis should be conducted. In general,

if the structural frequencies are higher than the highest

aerodynamic frequency by more than a factor of 5 to 10,

structural modes can be neglected [12].

4. Characterization of servo dynamics should be accomplished

prior to flight testing. The order of the servo dynamics model

can seriously impact the efficiency of the parameter

identification techniques used.

The vmain theme from most of the literature in this field of

study is that if the above are not thoroughly investigated prior

to flight testing, direct parameter identification from maximum

likelihood techniques is questionable. What occurs most often

when the above are not taken into account is that the maximum

likelihood techniques "fit" the flight test data very well but

the corresponding parameter estimates may make no physical sense.

In these cases, it is not at all unlikely that the stability and

control derivatives estimated may have the wrong sign and/or

unrealistic magnitudes.

Unfortunately, none of the above considerations were made

prior to flight tests of the Lambda vehicle. Sensor noise was

not characterized (estimates of sensor accuracy were made), servo

dynamics were not characterized, turbulence levels during flight

testing were not recorded, and no structural analysis was

periormed on the vehicle. Consequently, the use of maximum

likelihood techniques to directly estimate Lambda's stability and

control derivatives led to parameter estimates that fit the
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flight test data well but made no physical sense. Therefore, the

following ad hoc approach was formulated:

Step 1. Maximum likelihood estimation was used on the data for

each pitch doublet maneuver (pitch rate and angle of attack time

histories) to derive a second order linear model that fit the

flight test data well. Perfect measurements were assumed and the

measurements of actual control surface deflection were used (in

lieu of pilot command inputs). The eigenvalues of the corres-

ponding estimated state dynamics matrix were then used to calcu-

late the natural frequency and damping ratio of the second order

model. Tnese modes correspond to the natural frequency and damp-

ing ratio of the standard airplane short period approximation.

Step 2. Step 1 was repeated for each yaw doublet maneuver using

the yaw rate and angle of sideslip time histories. Therefore,

the result of this step was an estimation of the natural

frequency and damping ratio of the standard airplane dutch roll

approximation.

Step 3. Maximum likelihood estimation was then used on the data

for each roll doublet (roll rate time history) to develop a first

order model for the roll mode time constant.

Step 4. Using Digital Datcom, the stability and control

derivatives for each flight test maneuver were estimated, and the

standard approximations for short period natural frequency and

damping ratio, roll mode time constant, and dutch roll natural

frequency and damping ratio were calculated. Table 3.14 provides

a brief summary of the equations used for these approximations.
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Table 3.14. Summary of Short Period, Roll, and Dutch Roll

Approximation Equations.

SHORT PERIOD APPROXIMATION:

" a- and 0- degrees of freedom only

W)nsp 1, ("+M+ /U)

1 2 onsp

PHUGOID APPROXIMATION:

" u- and 0- degrees of freedom only

G)np CP =-x

1T 2 (anp

ROLL APPROXIMATION:

* #- degree of freedom only

TR= -1/

SPIRAL APPROXIMATION:

* @- and r- degrees of freedom only

Ts ~~k = e T__NL
r  r

DUTCH ROLL APPROXIMATION:

• - and 4- degrees of freedom only

Wndr = (YONr + NoU1 - NYr)/Ui (dr - N+ Yo-i
2ndr

Step 5. The results of Step 4 were compared to the maximum

likelihood estimates in Steps 1 through 3. The Datcom derivative

estimates were adjusted until an acceptable overall constant

value of each stability and control derivative was found that fit

the overall second or first order characteristics of the flight
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test data well. For example, iteration on C. led to value that

estimated the short period natural frequency for each pitch

doublet maneuver reasonably well.

Admittedly, this ad hoc approach was not able to derive

parameter estimates for the "weaker" phugoid and spiral modes.

However, as will be shown, this approach was able to accurately

model all rate time responses and a, P time responses. 0 and

time responses were less accurately modeled and speed time

response modeling often varied significantly from flight test

data. Also, some roll and pitch mode coupling was observed in

the flight test data which, again, this approach was not able to

address. In general, linear small perturbation theory will not

be able to adequately model pitch/roll mode coupling. Nonlinear

techniques should be used if this phenomenon is to be accurately

studied. A discussion of the actual implementation and results

of accomplishing Steps 1 through 5 will now be given.

A fourth order longitudinal state space model was developed

in Section 3.2 to estimate the u, a, q, and 0 time responses to

elevator and flap deflections; and a fifth order lateral-

directional state space model was constructed to estimate the ,

p, 0, r, and T time responses to aileron and rudder deflections.

To estimate the appropriate frequencies, damping ratios, and time

constants for the actual time responses, these fourth and fifth

order models were reduced to either first or second order models

using the short period, roll, and dutch roll approxinations

(Table 3.14). The short period approximation used a two state
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model and focused on the a- and q- degrees of freedom. The roll

approximation used a single state model and focused on the p-

degree of freedom. The dutch roll approximation used a two state

model and focused on the fl- and r- degrees of freedom.

The second order state space model used for the maximum

likelihood estimations was as follows:

E : J P ( 1 [( ) x , : : [ + f P ( 3 ) ]iC2 P(4) P(5) x2 ] P(6) (3.4)

= [C 1 C2] [x]1 X2

where the values C1 and C2 are known constants, parameters P(1)

through P(6) are to be estimated, and : is the estimated sensor

measurement to be compared to the actual measurement y. It was

assumed there was no process or measurement noise, and the actual

surface deflection time histories for the control input were

used. It was also assumed that the system started from rest

(zero initial conditions). The objective, then, was to vary the

parameters P(1) through P(6) until the error between y and q over

the entire time history was made as small as possible.

Therefore, the maximum likelihood approach used minimized the

quadratic cost function:

RSS = (Y-Y) (3.5)
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where RSS is the root sum square of the error between y and @ at

each sample in the time history. A similar set-up can be shown

for a simple first order model. The maximum likelihood routine

in the program MATRIXx developed by Integrated Systems, Inc. of

Palo Alto, California, was used to perform all maximum likelihood

estimates presented in this thesis.

A two state maximum likelihood model was estimated for each

pitch doublet from the first day of flight testing; a single

state maximum likelihood model was estimated for each roll

doublct; and a two state maximum likelihood model was estimated

for each yaw doublet. Appendix B contains an example for each

type of maneuver of the data fit achieved from the maximum

likelihood iterations.

The results from the maximum likelihood iterations were as

follows:

1. The maximum likelihood calculations arrived at parameters for

the state models that fit the actual time responses fairly well.

In theory, direct back-calculation of the dimensional derivatives

from the parameters converged upon by the maximum likelihood

iterations should yield the "ideal" stability and control

derivatives. Unfortunately, this only comes close to being true

for the roll mode approximation. The dimensional derivatives

back-calculated for both the short period and dutch roll

approximations lead to unrealistic values. Some derivatives even

had incorrect signs.
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2. The eigenvalues of the maximum likelihood state dynamics

matrix approximate the characteristic natural frequency and

damping ratio of the actual time responses for the two state

models or the time constant of the actual time response for the

one state model.

3. The estimated maximum likelihood models for the pitch

doublets revealed that the short period natural frequency from

the Datcom estimates needed to be increased and damping ratio

needed to be decreased. Table 3.15 compares the values of the

natural frequency and damping ratio between the maximum

likelihood results and the initial Datcom estimations. From the

short period approximation equations, increasing the magnitude of

M. will directly increase the short period natural frequency and

decreasing the magnitude of M. will directly decrease the short

period damping ratio. There is really only one effective way to

increase the magnitude of Ma -- increase CMa* Recall that C. is

approximated by:

Cr = Cia(Xcg-Xac) (3.6)

Since the Datcom methods for estimating the value for C., and the

location of the airplane aerodynamic center are usually quite

accurate, the center of gravity location should be the variable

to change to increase C,,. Recall that the mass property data

received from the Flight Dynamics Laboratory was suspect and the

value given for the c.g. location highly questionable. Using

Datcom, plots of short period frequency and damping ratio as a

function of c.g. location were constructed. From these, an
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appropriate value of XC, was selected that provided appropriate

values of short period natural frequency and damping ratio.

Table 3.15. Comparison of Short Period Approximation
Characteristics.

Xcg = 48.217 inches

Flight DATCOM MAXLIKE
Maneuver s) L -) .

(rad/sec) (rad/sec)

FIPI 3.800 0.4203 4.667 0.2218
FlP2 5.554 0.4203 6.359 0.3334
FIP3 4.969 0.4203 5.871 0.3050
FlP4 3.946 0.4203 4.529 0.2517

where, (First Day Flight Test)

FlPl - Pitch Doublet, Half Flaps, Full Throttle
FIP2 - Pitch Doublet, Zero Flaps, Full Throttle
FlP3 - Pitch Doublet, Zero Flaps, Half Throttle
FlP4 - Pitch Doublet, Half Flaps, Half Throttle

4. The roll maximum likelihood estimation revealed that the

initial roll mode time constant needed to be decreased by almost

a factor of two. Table 3.16 compares the values of the roll mode

time constants between the maximum likelihood results and the

initial Datcom estimations. Again, the methods used by Datcom to

estimate C1p have been proven through experience to be quite

accurate, which again points to the questionability of the mass

property, IXX. A quick estimation of the roll inertia, IXX, based

on inertia data of airplanes with a similar configuration to

Lambda ("radius of gyration" method [7]) revealed that indeed the

initial value of 16.25 slugs-sq. ft. appeared to be low.

Doubling the initial value of Ixx led to time responses that

closely fit the roll rate and roll attitude flight test data.
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Table 3.16. Comparison of Roll Approximation Characteristics.

Xcg = 48.217 inches

Flight DATCOM MAXLIKE
Maneuver L L L

T/e --1sec --La 2i/sec i/sec 1/sec 1/sec

FIR1 -11.91 129.9 -4.580 45.83
FlR2 -9.698 86.10 -4.149 34.03
FIR3 -9.851 88.83 -4.780 38.62
FIR4 -8.476 65.77 -4.579 32.99

where, (First Day Flight Test)

FIR1 - Roll Doublet, Zero Flaps, Full Throttle
FlR2 - Roll Doublet, Zero Flaps, Half Throttle
FIR3 - Roll Doublet, Half Flaps, Full Throttle
FlR4 - Roll Doublet, Half Flaps, Half Throttle

5. The estimated maximum likelihood models for the yaw doublets

showed that the dutch roll natural frequency needed to be

decreased and dutch roll damping ratio increased. Table 3.17

compares the values of the natural frequency and damping ratio

between the maximum likelihood results and the initial Datcom

estimations. From the dutch roll approximation equations, it is

observed that decreasing N. will directly decrease the dutch roll

natural frequency, and increasing Nr will directly increase the

dutch roll damping ratio. Changes in N, and Nr will be

accomplished by adjusting the nondimensional coefficients CP and

Cnr , respectively.
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Table 3.17. Comparison of Dutch Roll Approximation

Characteristics.

Xcg = 4E. 7 inches

Flight DATCOM MAXLIKE
Maneuver r.r 1 or -dr

(rad/sec) (rad/sec)

FIYI 4.041 0.1222 3.226 0.1646
FIY2 3.340 0.1222 2.423 0.2491
F1Y3 3.115 0.1222 2.695 0.2029
FlY4 2.779 0.1222 2.382 0.1818

where, (First Day Flight Test)

FIYI - Yaw Doublet, Zero Flaps, Full Throttle
FlY2 - Yaw Doublet, Zero Flaps, Half Throttle
FlY3 - Yaw Doublet, Half Flaps, Full Throttle
FIY4 - Yaw Doublet, Half Flaps, Half Throttle

Two more Datcom runs were accomplished at vehicle center of

gravity locations forward of the c.g. location from the initial

Datcom run. The c.g. locations chosen were at Xc,=47.311 inches

and 45.311 inches. The c.g. location of 47.311 inches

corresponds to the most forward location based on the mass

property data provided by tile Flight Control Division.

The longitudinal dimensional derivatives for the first two

pitch doublet maneuvers on the first flight test were estimated

and the corresponding short period natural freq.ency and damping

ratio calculated. Figures 3.3 and 3.4 plot the change in short

period natural frequency and damping ratio, respectively, versus

vehicle center of gravity location for the two flight condicions.

From the max! .um likel-hood estimations, a short period natural

frequency of 4.67 rad/sec is optimum for the first flight

condition and a naturaL frequeacy of 6.36 rad/sec is optimum for
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the second flight condition. From Figure 3.3 it is seen that not

one c.g. location will provide both of these natural frequencies

but a c.g. location of 47.2 inches comes fairly close (much

closer than the original estimate of 48.217 inches). Thus, the

value of 47.2 inches was chosen as the best estimate for the

center of gravity location for the overall vehicle weight of 203

pounds. A final, complete set of Datcom runs were then

accomplished (for all 12 flight conditions on the first day

flight test) for this new c.g. location and the dimensionless

derivatives cc respondingly calculated. Table 3.18 gives the

final values for the new set of dimensionless coefficients.

Table 3.18. Average Dimensionless Derivatives for the First
Flight Test (Xcg=4 7 .2 inches, W=203 pounds'.

AVERAGE DIMENSIONLESS COEFFICIENTS OVER 12 FLIGHT CONDITIONS.

1/deg 1/rad 1/deg 1/rad

CLa 0.1016 5.8203 CLde 0.0051 0.2908
CMa -0.0192 -1.1014 CM6e -0.0147 -0.8449

CDu 0.0 0.0 CYd a  0.0 0.0

CLu 0.0001 0.0071 C16 a  0.0046 0.2608
CMu 0.0 0.0 Cn6 a -0.0002 -0.0137

CDq 0.0 0.0 Cya r  0.0050 0.2865
CLq 0.1241 7.1128 CL6 r 0.0001 0.0022
CMq -0.2687 -15.397 Cnr -0.0016 -0.0943

CD& 0.0 0.0 CD6f 0.0015 0.0849
C A 0.0353 2.0232 CL6f 0.0246 1.4185
CM4 -0.1077 -6.1735 CM6f -0.0050 --0.2904

Cyf v  -0.0063 -0.3584 CYr 0.0045 0.2601
CYO -0.0076 -0.4372 C~r 0.0015 0.0876
CIO -0.0003 -0.0145 Cnr -0.0016 -0.0944
Cno 0.0017 0.0970

Cyp -0.0001 -0.0016
CIp -0.0097 -0.5538
Cnp -0.0006 -0.0360
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Figure 3.3. Change in Short Period Natural Frequency with a
Change in Vehicle Center of Gravity Location.
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Figure 3.4. Change in Short Period Damping Ratio with a Change
in Vehicle Center of Gravity Location.
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The state time responses were simulated with the new

estimated equations of motion, and the overall state space

perturbation model was then fine tuned as follows:

1. By concentrating on the pitch doublet time responses, CM was

varied until a short period damping ratio was obtained that

appeared to adequately fit the flight test data. The final value

of C. arrived at was 3.347 per radian. The magnitude of this

value seems reasonable, but for most airplanes this derivative

(due to "the lag of downwash" from the wing) has a negative

value. The only reasonable explanation for the positive value

for C. is that since the horizontal tail lies directly in the

flow of the propeller propwash and is well aft of the wing

itself, the horizontal tail does not see a lag of downwash effect

from the wing. Instead, it experiences a "lag of upwash" effect

from the propeller wake. This is only speculation based on the

characteristics observed in the time responses of the flight test

data.

2. Focusing on the roll doublet time responses, the value of

i,=32.5 slugs-sq. ft. produced very adequate results.

3. By concentrating on the yaw doublet time responses, Co and

Cnr were varied to obtain dutch roll frequencies and damping

ratios that adequately matched the flight test time responses.

The new values iterated upon only required small magnitude

changes from the Datcom estimated values. Although a constant

value for Cn matched the frequency for all the yaw doublet time

responses, a constant value of Cnr resulted in a damping ratio
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that appeared correct for only 3 of the 4 yaw doublet time

responses. The last yaw doublet maneuver at half flaps and half

throttle seemed to require a higher damping ratio than the other

yaw doublet maneuvers. Since no good explanation was determined

for this observation, a constant value for Cnr was used.

Table 3.19 presents the final values for the dimensionless

derivatives arrived at for the Lambda vehicle with a c.g.

location of 47.2 inches and vehicle weight of 203 pounds. The

next section will address the actuator lags and provide the

simulated time responses to the pilot command inputs.
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Table 3.19. Final Dimensionless Derivatives for the Lambda
Vehicle (Xc9=47.2 inches, W=203 pounds).

Longitudinal: Lateral-Directional:
(per radian) (per radian)

CMu = 0.000 CLO = -0.01451

C = -1.101 CLp = -0.5538

Cm = 3.347 Ctr = 0.08763

C = -15.40 Ct6a = 0.2608

CLu = 0.007071 C1r = 0.002223

CLa = 5.820 Cns = 0.06000

CL& = 2.023 Cnr = -0.1650

CLq = 7.113 Cna = -0.01368

CDa = 0.000 Cn6r = -0.09434

CDu = 0.000 CY0 = -0.4372

CL e = 0.2908 Cyp = -0-001600

CD6e = 0.000 Cyr = 0.2601

C0me = -0.8449 Cysa = 0.000

CL6f = 1.419 CY~r = 0.2865

CDf = 0.08489 Cnp = -0.03601

Cmf = -0.2904
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3.5. Final State Space Model

The final hurdle in constructing a full math model for the

Lambda URV was the calculation of actuator lags and determination

of any scaling required of the pilot command signals. Figure 3.5

shows the pilot pitch command and corresponding elevator

deflection time histories for the first pitch doublet for the

first flight test. Notice that, indeed, a time lag exists

between the input command and the actual control surface

deflection due to the actuator lag, and a scaling factor is

evident between the magnitudes of the command input and actual

deflection. Similar results hold for the aileron and rudder

deflections due to pilot roll and yaw commands, respectively.

First, the scale factor for the command inputs were

estimated by trial and error. Figure 3.6 shows one such

iteration for the first pitch doublet flight maneuver. Notice

that a constant scale factor does not quite reduce the command

input to coincide with the maximum and minimum elevator

deflection values. The same characteristics were observed for

the roll and yaw command scalings.

A simple first order lag was used to approximate the servo

dynamics. Higher order models were briefly investigated but the

minor gain in modeling accuracy did not justify the increased

model complexity. A least squares optimization routine which

minimized the square of the error between the first order

approximation and actual servo deflection was constructed to

estimate the best value for the servo lag time constant.
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Figure 3.5. Pitch Command and Elevator Deflection Time History
for Flight Maneuver PD,HF,FT 11/20/90.
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Figure 3.6. Scaling of the Pitch Command Input for the Flight
Maneuver PD,HF,FT 11/20/90.

3.44



Table 3.20 summarizes the final values for the elevator,

aileron, and rudder scalings and time lag constants. Figure 3.7

provides a comparison between the servo model's performance and

the actual control surface deflection time histories for one

pitch maneuver.

Table 3.20. Elevator, Aileron, and Rudder Servo Characteristics
for the Lambda URV.

Actuator Scaling LaQ Constant
(output/command) (a/[s+a])

Elevator 0.725 6.5
Aileron 0.700 5.5
Rudder 0.900 6.2

MODEL:

6c  6c 6
Scale[ >a

Factor I~

The final state space model using the pilot commands as the

inputs is given by Table 3.31. The total state vector includes

the longitudinal perturbation state vector, the lateral-

directional perturbation state vector, the longitudinal control

surface deflection perturb7,tion state vector, and the lateral-

directional control surface deflection perturbation state vector.

The control input vector consists of the pilot elevator, flap

(usually zero), aileron, and rudder command inputs. Appendix C

provides an example of the model's approximation of the state

vector time responses compared to the actual flight test data for

each type of flight test maneuver conducted.
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Figure 3.7. Comparison of Estimated and Actual Elevator Surface
Deflection for the First Pitch Doublet Maneuver.
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Table 3.21. Final State Snace Model.

A, 091, 9 0 0

2 02 122 2 06c0 14

:11 Az i 4c2J
110 0 0 u6 6

Y, 1 0 0 0 i0 uc

-20 1 0 .0 X U

Y10 0 1 0

0 0 0 1I4

where,

xuXc 0 -gcosO1

111+ -gsin61
U1-z& U1-z& Ul-zal

A,
m + z +mm +M UI+Zq -M~gsinO1

U1-z&r U1-z& U1-Z&

0 0 1 0

XS~e Xsf

tU1-z&r U1-z&

M+-M-Ze MS f + M*.Zf
U1 -za U1-z&t

0 0
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Table 3.21. Continued.

4 p cosO1  Xr -1 0
U1  U1  U1  U1

L +A1NO ;i+ANi 0 N 0
1-B1 A1  1-BA 1  1-B1 A1

A2  = 0 1 0 0 0

N +B L~ N +BlIL 0 N,+BL, 0
1-B1 A1  1L-B1 A1  1-B1 A1

0 0 0 1 0

Y6, y4r
Ul U1

4,+AlN,-4+laZ

1-BA 1  1-B1 A1

=2 00

NZ,~+BIj Nr±iIL

1-B1 A1  1-B1 A1

0 0

0 -af

[:e 0f

0 a0

0 ~-ar
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3.6. Conclusions and Recommendations

The following conclusions should be noted:

1. Digital Datcom was an effective tool for estimating Lambda's

dimensionless stability and control derivatives. The main

modeling problems stemmed from the lack of accurate mass property

data. The accuracy of the mass property data presented in

Chapter 2 is highly questionable. The center of gravity location

from the weights breakdown model presented did not lead to an

accurate estimation of the vehicle c.g. location. For the first

flight test, this error in estimating the vehicle c.g. location

by using the Chapter 2 model may have been as large as 10% of the

mean aerodynamic chord. The roll inertia estimated from the

Chapter 2 model may have been off by a factor of two. These

estimation errors of mass properties directly led to gross errors

in estimating the overall stability and control derivatives.

2. Due to the limited information on sensor noise, servo

dynamics, and structural dynamics, direct estimation of the

stability and control parameters through maximum likelihood

estimation techniques was not possible. Maximum likelihood

parameter estimation was, however, an effective tool for

estimating the second order characteristics of the short period

and dutch roll, and the first order characteristics of the roll

mode from the flight test a, q, P, r, and p time histories.

Short period frequency, dutch roll frequency, and roll mode time

constant were accurately estimated through maximum likelihood

estimation. Short period and dutch roll damping ratios, however,
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required basic "brute force" variation of the stability

derivatives (CM&,Cnr) by trial-and-error to obtain adequate

damping characteristics over all the flight maneuvers.

3. The phugoid and spiral mode characteristics of Lambda were

not directly determined from the flight test data. This was due,

in part, to the limited time histories (less than 10 seconds) for

each flight maneuver. However, if process and measurement noise

characteristics are added to the maximum likelihood estimation

process (through the addition of a Kalman filter to estimate

states and measurements), the parameters characterizing these

modes could probably be determined from the flight test data

[10, 11, 12].

4. The flight test data indicated that Lambda has roll/pitch

coupling dynamics. This coupling was most prevalent on the pitch

doublet maneuvers. The estimation models used in this thesis,

however, were unable to address or characterize the observed

coupling.

The following recommendations are given:

1. The mass property data on the Lambda URV needs to be

revisited. The following pieces of information need to be

accurately determined:

* a center of gravity excursion diagram, and

" the mass moment of inertia about each of the principle
body axes.

The above information can be obtained experimentally and would

not require the Lambda vehicle to be disassembled [14, 15].

Once the most forward and most aft locations of the vehicle c.g.
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have been det'-rmined, Datcom runs should be accomplishud and the

stability and control derivatives estimated at each of these

locations. The variation of the stability and cortrol

derivatives could then be plotted against c.g. location. Another

set ot flight tests, conducted at vastly different c.g.

locations, could then be used to calibrate the stability and

control derivative estimations.

2. If a more accurate math model of the Lambda URV is desired,

the following will need to be accomplished:

* sensor noise completely characterized,

* servo dynamics completely characterized, and

" structural dynamics analyzed.

Using the above data, a maximum likelihood parameter estimation

approach can be created that implements a Kalman filter to

estimate states and measurements (not parameters). This approach

could also account for atmospheric Lurbulence during flight

testing. Such methods are currently in use at the major flight

test centers [12].

3. The effects of the propeller wash over -he horizontal tail

should be investigated. Two significant ,ieces of infuation

that could be obtained experimentally are:

• the dynamic pressure over the horizontal tail surface (through

the proper installation of a pitot-static tube or pressure taps

on the horizontal tail), and

* thrust level data calibrated to throttle setting and

atmospheric conditions.
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4. Rate Controller DesiQn UsinQ Classical Techniques

Classical flight control design techniques provide a solid

starting point for the engineer who is attempting to eesign a

flight control system for a new vehicle. These methods have been

used extensively over the years. Several excellent texts exist

which thoroughly describe the mechanics of the classical design

process. The methods described in texts by Roskam [4] and McRuer

[5] will be primarily used for the designs developed in this

chapter.

The chapter begins with a definition of Lambda's projected

flight envelope and an algorithm for estimating Lambda's stabil-

ity and control derivatives at the various flight conditions.

Sections 4.2 through 4.4 provide the pitch rate, roll rate, and

yaw rate controller designs, respectively. Section 4.5 then

provides a discussion of the overall designs and an overview of

the information obtained from using classical design techniques.

All rate compensators developed in this chapter were

arbitrarily limited to order less than three. All poles and

zeros chosen for the compensators were restricted to the real

axis.
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4.1. Projected FliQht Envelope

Lambda's flight envelope was defined as a function of speed

and center of gravity location. Since the vehicle routinely

flies below 5,000 ft (predicted ceiling of 10,000 ft), altitude

was not incorporated into the definition of the envelope. The

basis for the flight envelope was the weight model developed in

Chapter 2, performance predicLions supplied by the Flight Control

Division, and loading predictions supplied by the contractor

Lear-Siegler.

The weight model developed in Chapter 2 was corrected to

yield the proper center of gravity location determined from the

flight test data results given in Chapter 3. Therefore, the

entire weight model is based on only one known data point.

Indeed, this is a precarious foundation after the effects of

incorrectly estimating the vehicle's c.g. location were

illustrated in Chapter 3. It will be the job of the Flight

Dynamics Laboratory to pursue further flight testing to verify

the weight model (see recommendations at the end of Chapter 3).

Variations in the vehicle's c.g. location result from the

following:

* fuel loading and expenditure during flight, and

" loading arrangements in the avionics bay.

The avionics bay on Lambda can contain 2 avionics boxes (see

Figure 4.1). The airplane cannot fly without Avionics Box #1.

This box currently weights 9 pounds but projected upgrades may

increase its weight to 12 pounds. Avionics Box #2 is optional
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and is projected to weigh 15 pounds. The fuel tank is housed in

the aft of the fuselage and has a maximum capacity of

approximately 2 1/3 gallons (14 pounds). Thus, the four extreme

possible loading conditions for Lambda are as follows:

" Avionics Box #1, no fuel

* Avionics Box #1, full fuel

" Avionics Boxes #1 and #2, no fuel

* Avionics Boxes #1 and #2, full fuel.

It should be noted that Lambda has landed, on more than one

occasion, with no fuel remaining in tl. tank. Using the above

scenarios, a center of gravity excursion diagram was constructed

and is presented in Figure 4.2. The estimated c.g. range for

Lambda is as follows:

most forward c.g. location: 45.83 inches (21.85% MAC)

most aft c.g. location: 47.75 inches (32.43% MAC)

The in-flight weight can vary from 181 pounds up to 213 pounds.

The Flight Dynamics Laboratory has predicted the following

speed ranges for the Lambda URV:

maximum speed 100 knots

stall speed, no flaps 54 knots

stall speed, full flaps 45 knots

Thus, the projected flight envelope is given in Figure 4.3.

Two more sets of Digital Datcom computations were

accomplished at the most forward and most aft c.g. locations.

These were combined with the Datcom estimations at the flight

test condition tc provide a linear estimation of the change in
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dimensionless stability and control derivatives with center of

gravity location. All linear estimations were adjusted to pass

through the correct derivative value at the fliyht test condition

(Xcg=48.186 inches) as determined in Chapter 3. A MATLAB program

was then developed that calculates the linear, state space, small

perturbation model (both longitudinal and lateral-directional)

for Lambda given the r "F gravity location, triLauteu iiignh

speed, dynamic pressure, vehicle weight,and trimmed pitch angle

as inputs. The program, named DERCALC, is presented in Appendix

D and was the foundation for all controller design work.

Box Box
#1 #2

Fuselage Fuel

Box #1 - 9 lbs (possible growth to 12 Ibs)
Box #2 - 15 lbs

Figure 4.1. Avionics Bay Arrangement for the Lambda URV.
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Center of Gravity Excursion Diagram
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Figure 4.2. Center of Gravity Excursion Diagram for Lambda.

Projected Flight Envelope
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Figure 4.3. Projected Flight Envelope for the Lambda URV.
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4.2. Pitch Rate Controller Design

The ciassical philosophy for a pitch rate controller design

ic a single input/single output (SISO) transfer function approach

that involves the selection of gains, poles, and zeros confined

to the real axis for the compensator. The fundamental tools are

the block diagram, root locus diagrams, bode magnitude and phase

plots, and closed loop time response plots. Four point designs,

one for each corner of Lambda's fliglt envelope, were

accomplished. The design for the slow speed, most forward c.g.

location will be described in detail.

Flight Condition #1 Pint Design.

Xcg=45.83 in qi=6.866 psf O1-C deg (4.1)

U1=76.0 fps W1=200 lbs

The pitch rate to elevator deflection transfer function for this

flight condition is as follows:

C = -7.I04s(s+O.283)(s+I.351) (4.2)

6e(s) (S2+2.901s+14.81)(s2-0.0175s+0.306)

which corresponds to the following characteristic modes:

short period natural frequency: 3.849 rad/sec
short period damping ratio: 0.3769
phugoid natural frequency: 0.553 rad/sec
phugoid damping ratio: -0.0159

Notice that the phugoid mode is unstable at this flight

condition. The elevator servo dynamics are modeled as a pure

lag:

Gs(S) = 65.s) = 6.5 (4.3)

6e(S)com s+6.5
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Initially, a negative feedback compensator using a pure gain

and a lead were designed. The general block diagram for this

pitch rate controller design is given in Figure 4.4.

qc q s+a C6.5 q0
- -Kq s s+6.5 b e  I

Figure 4.4. Pitch Rate Controller Block Diagram (Negative
Feedback with a Gain and a Lead).

The open loop transfer function for this system is:

GOL(S) = Kq (s+aL) 6.5 a (4.4)
S (s+6.5) 8e(S )

and the steady state error is:

ess = 1 - Ka(6.5) (aL) (-2.7195) (4.5)
6.5(4.5339)+Kq(6.5) (aL) (-2.7195)

A generic root locus diagram for this system is given in

Figure 4.5. Selection of Kq and the lead constant (aL) requires

the following considerations:

1. Steady state error (Eqn. 4.5) decreases as Kq*aL increases.
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2. Increasing aL moves the center of the root locus asymptotes

towards the imaginary axis. Specifically, this shifts the short

period locus towards the imaginary axis.

3. Increasing Kq moves the phugoid roots into the stable region

of the s-plane, but also quickly decreases short period damping.

Im

hort perlod

phugoid (unstable)

x Re
lead 

R

Figure 4.5. General Root Locus for Figure 4.4 Block Diagram.

It should be noted that most conventional airplanes have

elevators with faster servos. In such a case, a typical root

locus for the same problem set-up is given in Figure 4.6. In

this case, increasing Kq would move the phugcid roots to the

stable half of the s-plane without sacrificing short period

damping. The trade-off in this case would be between steady

state error and short period damping.
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Im

short period

phugoid (unstable)

fast servo

Ole Re
lead

Figure 4.6. Typical Root Locus for Figure 4.4 Block Diagram.

The closed loop time response for aL= 5 .0 and Kq=-2.5 is

given in Figure 4.7. Notice that the response is highly

oscillatory (low short period damping) and has a steady state

error of 11.8%. Tncreasing Kq would reduce the steady state

error but would increase the oscillations.

Adding a lead to the compensator of the form,

G(s)=(s+c)/(s+d) where c < d, results in slightly lower steady

state error and better short period damping at a higher Kq. The

added zero, placed on the real axis in the vicinity of the short

period poles, tends to slow the reduction of short period damping

as Kq is increased.
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Kq=-2.5. a=5.0

1.6,

1.4-

127

IT 0. 11

0.6

0.4'

0.2

0*
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time, sec

Figure 4.7. Closed Loop Time Response for Kq=-2.5, aL= 5 .0.

The final design selected for this flight condition is

summarized in Figure 4.8. The corresponding root locus and

closed loop time response are given in Figures 4.9 and 4.10,

respectively. The Bode magnitude and phase plot for the open

loop transfer function is given in Figure 4.11. Notice thL :he

phase margin for this design is only 13 degrees.

Using the same approach, pitch rate controller point designs

were accomplished at the three remaining corners of the flight

envelope. Table 4.1 summarizes the point designs. Figure 4.12

provides the closed loop time responses for each of the final

designs (at the most aft c.g. location). It should be noted that

the Lrain goal in. these designs was to keep the steady state error
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low (at approximately 5% or less). Another approach could have

targeted a standard phase margin (such as 30 degrees) for each

point design. In that case, lower gains would have been used

which would have resulted in large steady state errors.

Table 4.1. Pitch Rate Controller Point Designs.

FC XCg U1  W Kq aL c d PM ess
(in) (fps) (lbs) (deg) (%)

1 45.83 76.0 200 -15 2.75 3.0 4.0 Ij 5.11
2 45.83 168.9 200 -5 2.75 3.0 4.0 13 5.76
3 47.75 168.9 200 -5 2.75 3.0 4.0 12 3.54
4 47.75 76.0 200 -15 2.75 3.0 4.0 12 3.19

FC Flight Condition
PM Phase Margin

The compensator pole and zero placement is constant for all

point designs. In order to keep steady state error at

approximately 5%, it was absolutely essential to change the

compensator gain between the low and high flight speeds.

Therefore, gain scheduling as a function of flight speed, U, will

be implemented into the controller design as follows:

Kqtow = -15 (gain at U=76.0 fps)

Kqhig h = -5 (gain at U=168.9 fps)

Kq = KqLow + (Kqtow - Kqhigh)(U- 7 6.0)/(1 6 8 . 9 - 7 6 .) (4.6)

The final design block diagram is presented in Figure 4.13.
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eqc.e Kq sta C 6.5 O I
s s+d S+6.5 e q -

Kq=-15 a-2.75 c=3 d=4

Figure 4.8. Final Pitch Rate Controller Block Diagram for Flight
Condition #1.
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6-
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-7 -6 -5 -4 -3 -2 -I 0

real

Figure 4.9. Root Locus for the Controller Design for Flight
Condition #J..
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Kq=-15. a=2.75, c=3, d=4
1.8

1.6

o 1.2 ; /
m

41
S o.oI \

.2

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time, sec

Figure 4.10. Closed Loop Time Response for the Pitch Rate
Controller Design for Flight Condition #1.

Kq=-15, a=2.75, c=3, d=4

- 50

-50-

-100
10

-
3 10-2 10-' 100 10' 102 103

frequency, rad/sec

400 , , .. , ,

u 300-

o~200-

frequency, rad/sec

Figure 4.11. Bode Magnitude and Phase Plot for the Controller
Design for Flight Condition #1.
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Low Speed(-) and High Speed(--) Response

1.5-

1.2w

0.8

0.67

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time. sec

Low Speed(-) and High Speed(--) Response
2-

0 A
------------------------------------

-3I

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time, sec

Figure 4.12. Closed Loop Time Responses for the Final Pitch Rate
Controller Point Designs.
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q -be 65 b
c e Kq sa S+C_ .

s s+d s .5e

Figure 4.13. Block Diagram for the Final Pitch Rate Controller

Design.
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4.3. Roll Rate Controller DesiQn

The general block diagram used to design the roll rate

controllers is given in Figure 4.14. Four point designs, one for

each corner of the flight envelope, were accomplished. The

design for the slow speed, most forward c.g. location will be

described in detail.

Ces+a aC 5.5 p P pKp S

Figure 4.14. Roll Rate Controller Block Diagram
(Negative Feedback with a Gain and a Lead).

FliQht Condition #1 Point Design.

Xcg=45.83 in qI= 6 .8 6 6 psf 01=0 deg

U1=76.0 fps W1=200 lbs

The roll rate to aileron deflection transfer function for this

flight condition is given below:

p (S = 16.35s(s2+0.8934s+3.077) (4.7)

A (S) (s2 +0.9093s+3.307) (s+3.249) (s-0.0328)
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which corresponds to the following lateral-directional

characteristic modes:

dutch roll natural frequency: 1.819 rad/sec
dutch roll damping ratio: 0.2500
roll mode time constant: 0.3078 sec
unstable spiral mode

The aileron servo dynamics are modeled as follows:

GS(S) = -_A(S) 5.5 (4.8)

SA (S) 0,s+5.5

A general root locus for the block diagram in Figure 4.14 is

given in Figure 4.15. Notice that a gain and a lead will provide

an adequate compensator for this control design.

Im

dutch roll mode
o-X

xC* c4 - Re
spiral mode

Figure 4.15. General Root Locus for Figure 4.14 Block Diagram.
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The open loop transfer function for this system is:

GoL(S) = Kp (s+aL) 5.5 Ps (4.9)
s (s+5.5) 6A(W)

and the steady state error is:

ess = 1 - K' aL) (5.5) (5 0 .31) (4.10)
(-0.3524) (5.5)+Kp(a) (5.5) (50.31)

The selection of Kp and the lead coefficient (aL) requircs the

following considerations:

1. Steady state error (Eqn. 4.10) decreases as Kp*aL increases.

2. Increasing aL moves the center of the root locus asymptotes

towards the imaginary axis which, in turn, reduces the natural

frequency of the closed loop time response.

3. Increasing Kp drives the spiral root stable, reduces the

effects of the dutch roll mode, and eventually decreases the

damping ratio of the closed loop time response.

The root locus for Kp=0.15 and aL= 3 is given in Figure 4.16.

The corresponding closed loop time response is given in Figure

4.17. The response has a rise time of approximately 0.5 seconds

and a settling time of approximately 1 second. The steady state

error is 1.6%.

The Bode magnitude and phase plot for the open loop transfer

function is given in Figure 4.18. Notice that the phase margin

for this design is 73 degrees.
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Figure 4.16. Root Locus for the Roll Rate Controller for Flight
Condition #f1 with Kp=O.15 and aL= 3 .O.
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Figure 4.17. Closed Loop Time Response for the Roll Rate
Controller Design for Flight Condition #1.
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Figure 4.18. Bode Magnitude and Phase Plot for the Roll Rate

Controller Design for Flight Condition #1.

The same gain and lead placement produced comparable roll

rate controller designs at the other three corners of Lambda's

flight envelope. Table 4.2 summarizes the roll rate controller

point designs. Figure 4.19 provides the closed loop time res-

ponses for each of the final designs (at the most aft c.g. loca-

tion). These all appear to be very good designs; therefore, gain

scheduling will not be required for the roll rate controller.

Table 4.2. Roll Rate Controller Point Designs.

FC Xcg U 1  W Kp aL PM ess ts
(in) (fps) (lbs) (deg) (%) (sec)

1 45.83 76.0 200 0.15 3.0 73 1.6 1.0
2 45.83 168.9 200 0.15 3.0 67 0.4 1.0
3 47.75 168.9 200 0.15 3.0 67 0.3 1.0
4 47.75 76.0 200 0.15 3.0 73 1.6 1.0

FC a Flight Condition

PM = Phase Margin
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Low Speed -)and High Speed (-)Response
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Figure 4.19. Closed L~op Time Respon~es foi the Final Roll Rate
Controller Point Designs.
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4.4. Yaw Rate Controller Design

The same approach used to design the pitch rate controller

was used in the design of the yaw rate controller. Four point

designs were again accomplished. The design for the slow speed,

most forward c.g. location will be described in detail.

Flight Condition #1 Point Design.

Xcg= 45 .83 in i=6.866 psf 01=0 deg

U1=76.0 fps W1=200 lbs

The yaw rate to rudder deflection transfer function is:

r =s) -3.845(s+3.256)(s 2+0.0306s+0.1060) (4.11)

6R(S) (S 2+0.9093s+3.307) (s+3.249) (s-0.0328)

which corresponds to the following lateral-directional

characteristic modes:

dutch roll natural frequency: 1.819 rad/sec
dutch roll damping ratio: 0.2500
roll mode time constant: 0.3078 sec
unstable spiral mode

The rudder servo dynamics are modeled as follows:

GS(S) = 6_R(S= 6.2 (4.12)

,5R (S) s+6.2

A negative feedback compensator with a pure gain and two

leads produced the best results. The general block diagram for

this design is given in Figure 4.19.
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rC e Kr s+stc br 6.2 6r r r

s s+d s6.2 br

Figure 4.20. Yaw Rate Controller General Block Diagram
(Negative Feedback with a Pure Gain and Two Leads).

The open loop transfer function for this system is as

follows:

GOL(S) = Kr (S+aL) (S+C) 6.2 r(s) (4.13)
s (s+d) (s+6.2) SP(s)

The steady state error for this system is zero; therefore, this

will be a true Type-i system. A general root locus for this

design is given in Figure 4.21. This is the most complicated

root locus yet shown.
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dutch roll mode

rudder lag roll mode d
X PG--(. Re

ac spiral mode

Figure 4.21. General Root Locus for Figure 4.20 Block Diagram.

Selection of Kr, at, c, and d requires the following

considerations:

1. The best placement for the zero, c, was near the origin so as

to mirror the unstable spiral root. This tended accelerate the

movement of the locus, formed by the spiral root and pole at the

origin, into the stable s-plane and closer to the real axis.

Thus, lower gain could be used to drive the spiral locus stable

while at the same time maximizing damping ratio.

2. Increasing Kr quickly decreases the damping ratio of the

dutch roll mode. This causes large initial oscillation in the

closed loop time response. Increasing Kr also drives the spiral

locus roots closer to the complex zeros near the origin. If Kr
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is large enough, these complex zeros tend to cancel the effect of

the spiral locus roots. At the same time, increasing Kr drives

the pole originating at d to the zero c which is near the origin.

This low frequency pole combined with the near cancellation of

the complex pole/zero pair near the origin causes a slowly dying

small frequency oscillation in the long term time response.

The closed loop time response for Kr=-2.5, aL= 4 .0, c=0.033,

and d=0.5 is given in Figure 4.22. Several other values for Kr,

aL, c, and d were tried, but this response was actually one of

the best. The Bode magnitude and phase plot for the open loop

transfer function is given in Figure 4.23. Notice that the phase

margin is 22 degrees.

Using the same approach, yaw rate controller point designs

were accomplished at the remaining three corners of the flight

envelope. Table 4.3 summarizes the point designs and Figure 4.24

provides the corresponding closed loop time responses (at the

most aft c.g. location). Gain scheduling of Kr as a function of

flight speed is required for all other flight conditions within

Lambda's flight envelope.

Table 4.3. Yaw Rate Controller Point Designs.

FC Xcg U1  W Kr aL c d PM ess
(in) (fps) (lbs) (deg) (%)

1 45.83 76.0 200 -2.5 4.0 0.033 0.5 22 1.50
2 45.83 168.9 200 -1.0 4.0 0.033 0.5 23 1.35
3 47.75 168.9 200 -1.0 4.0 0.033 0.5 23 1.35
4 47.75 76.0 200 -2.5 4.0 0.033 0.5 22 1.50

FC = Flight Condition
PM a Phase Margin
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Kr=-2.5, a=4, c=0.033, d=0.5
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Figure 4.22. Closed Loop Time Response for the Yaw Rate Con-
troller for Flight Conditon #1 with Kr=-2.5, aL=4 , c=0.033, d=0.5.
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Figure 4.23. Bode Magnitude and Phase Plot for the Yaw Rate
Controller Design for Flight Condition #1.
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Low Speed -)and High Speed -- )Response
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Figure 4.24. Closed Loop Time Responses for the Final Yaw Rate
Controller Point Designs.
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4.5. Discussion of Rate Controller Designs Using Classical

Techniques

The main pnrpose of this chapter was to create a set of

baseline rate controller designs to be compared with the

multivariable feedback controller systems to be developed in the

next chapter. It should be noted that attention was restricted

to only single integrator compensators for the classical rate

controller designs. Before proceeding, a discussion of the

advantages and disadvantages of the methods used in this chapter

are in order.

The main advantage of classical control design is the

insight gained of the basic control problem being worked. Root

locus techniques clearly show the engineer the characteristic

modes of the airplane's open loop system. It emphasizes the

strengths and weaknesses of the basic configurational layout. It

clearly illustrates the overall control authority the engineer

has at his disposal. For example, the slow elevator servo

obstructed any attempt to arrive at a good pitch rate controller

design for the Lambda URV.

The main disadvantage of classical control design is the

lack of structure in choosing pole/zero placement for lag/lead

compensation. The designer is forced to iterate between the open

loop root locus, open loop Bode plot, and the closed loop time

responses in order to select compensator gains, poles, and zeros

that produce adequate closed loop performance and system

robustness. Furthermore, lead/lag compensation can only be used

to a certain extent before the designer begins to seek
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compensators that free him from the real axis. The yaw rate

controller design is a good example. A technique that would

allow near cancellation of undesired modes through complex

compensation would provide an opportunity for a better yaw rate

controller design.

Finally, classical control techniques do not offer the

ability to observe the effects of process or measurement noise on

the overall system. The roll rate controller appears to be a

successful first design. However, the design still needs to be

tested against measurement noise and atmospheric disturbances.

If it fails to perform adequately in the presence of noise,

classical control techniques offer few alternatives for redesign.

The next chapter re-accomplishes each of the rate controller

designs using multivariable feedback techniques. These

techniques specifically provide a structure that directly

addresses system performance, robustness, and noise.

4.29



5. Rate Controller Design Using Multivariable Feedback
Techniques

In the last three decades, controller design using state

space concepts and techniques have undergone significant research

and development. Several multivariable, linear, time-invariant

feedback methods for finite dimensional, linear, time-invariant

systems exist today. The design methodology that will be used in

this chapter is the Linear Quadratic Gaussian with Loop Transfer

Recovery (LQG/LTR) approach. The 1981 paper by Doyle and Stein

[16] is an excellent introduction to the LQG/LTR approach, with

References 17 through 20 providing further development. In 1986,

Ridgely and Banda [6] composed a technical report that has since

become a handbook for LQG/LTR design. This handbook was used

extensively for the controller designs presented in this chapter.

Section 5.1 provides an overview of the LQG/LTR approach

used in the design of the rate controllers for Lambda. A basic

outline of the methodology and an overview of the tools used is

given. The reader is directed to Reference 6 for further

development of the LQG/LTR approach used in this chapter. The

pitch rate, roll rate, and yaw rate LQG/LTR controller designs

for Lambda are presented in Sections 5.2, 5.3, and 5.4,

respectively. Finally, Section 5.5 discusses the results of the

overall designs and suggests ways to improve the controllers.
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5.1. LOG/LTR MethodoloQy

The system model for Lambda is assumed to be of the form:

x(t) = Ax(t) + Bu(t) + r (t) (5.1)

y(t) = Cx(t) + n(t) (5.2)

where,

x(t) = n-vector state time history
u(t) = m-vector control input time history
y(t) = r-vector measurement time history
E(t) = s-vector white Gaussian process noise with statistics

E( (t) }=O (5.3)

E(E (t) ET(7-) }=Qo 6, (t-Tr) (5.4)

with Qo a symmetric, positive semidefinite matrix

n(t) = r-vector white Gaussian measurement noise with
statistics

E{2(t) )=O (5.5)

E (7(t) 1(7 ) )=Rf6 (t-r) (5.6)

with Rf a symmetric, positive definite matrix

A = nxn time invariant system dynamics matrix
B = nxm time invariant, deterministic input matrix
C = rxn measurement matrix
r = nxs time invariant, process noise input matrix

It is further assumed that x(to), E(t) and 17(t) are independent

of each other.

It is now desired to design a Linear Quadratic Gaussian

(LQG) compensator for this system. The LQG compensator consists

of the following two parts:

" the Linear Quadratic Estimator (LQE), and

* the Linear Quadratic Regulator (LQR).

Furthermore, the LQ estimator and LQ regulator designs will be

constructed using the LQG/LTR framework. Specifically, the
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approach of breaking the loop at the plant output will be used.

The development of this approach is provided in detail in

Chapter 9 of Reference 6. Only the mechanics of this approach

will be given here.

LQG/LTR design by breaking the loop at the plant output

involves the following steps:

1. Design a full-state LQ estimator whose loop shape meets
all performance requirements.

2. Design a sequence of LQG compensators by designing a LQ
regulator which recovers the properties of the full state
estimator.

This procedure will now be described.

5.1.1. The Linear Quadratic Estimator (LOE)

Given the stochastic linear system defined by Equations 5.1

through 5.6, it is desired to produce an estimate, x(T), of the

state, x(T), at times T > to, using only the measurement data,

y(t), from to < t < T. This is done by forming the state error

vector,

e(t) = x(t) - R(t) (5.7)

and minimizing the mean square error,

e(T) = E(e T(t)e(t)) = E(Itx(t)-(t)f2) (5.8)

The estimator dynamics are then given by

x (t) = Ak (t) + Bu(t) + Kf[y(t) - CM(t)] (5.9)

The Kalman filter gain matrix, Kf, which minimizes Equation 5.8

is given by

Kf = MCTRf"I  (5.10)

M is the variance of the error and is found by solving the
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algebraic Riccati equation,

0 = AM + MAT + rQolT - MCTRf'1CM (5.11)

The error dynamics of the estimator are then given by

'6 (t) = SC()- (t

= [A-KfC]e(t) + [r -Kf][(t) 7(t)] T  (5.12)

Therefore, the poles of [A-KfC] are the poles of the filter, and

are asymptotically stable iff the pair [A,r] is stabilizable.

Finally, the estimator loop transfer function is given by

TKF(S) = C-Kf (5.13)
-1

where, t(s) = (sI-A) . (5.14)

For the purposes of design, the following assumptions will

be made:

1. The process noise is assumed to have unit intensity,

Q0 = I. (5.15)

2. The process noise input matrix, r, is completely general.
The designer can use r to help tune the loop shape of the
estimator transfer function.

3. The measurement noise is assumed to have the following

intensity:

Rf = AI. (5.16)

will also be used by the designer to adjust the loop shape of
the estimator transfer function.

Thus, the designer has two completely tunable parameters, r and

A, to use for shaping the loop of the Kalman filter transfer

function.

5.1.2. The Linear Quadratic Regulator (LOR)

For the LQ regulator it is desired to minimize the quadratic
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performance index, J, which is given by

= f:[xT(t)Qxc(t) + uT(t)Rcu(t)]dt (5.17)

where,

Qc = symmetric, positive semidefinite state weighting matrix

Rc = symmetric, positive definite control weight matrix

Assuming [A,B] is stabilizable, the feedback law

u (t) =-KcX (t) (5.18)

makes the closed loop system (without noise)

x(t) = [A-BKc]X(t) (5.19)

asymptotically stable. The matrix, Kc, that minimizes J is

Kc = Rc'1BTP (5.20)

where P is the solution to the algebraic Riccati equation

0 = AT + PA - PBRc 1BTP + QC (5.21)

Defining the system response equation as

z(t) = Hx(t) (5.22)

then,

Qc = H TH (5.23)

Therefore, z(t) is the response that will be regulated. Since

the closed loop :egulator is given by Equation 5.19, the poles of

[A-BKc] are the poles of the regulator. The regulator loop

transfer function is then given by

TR(s) = Kc§B (5.24)

Again, for the purposes of design, the following assumptions

will be made:

1. The control weighting matrix is

Rc = pI. (5.25)
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2. The state weighting matrix is

Qc = H TH + q 2CTC (5.26)

where z(t)=Hx(t) is the response to be regulated.

By defining Rc and Qc in this manner, loop transfer recovery of

the Kalman filter design can be realized (if the transmission

zeros of the open loop plant are stable). The designer then

chooses:

* H based on which states (or combination thereof) are to be
regulated,

* p based on the amount of control usage willing to be
expended, and

* q based on the level of recovery to be achieved.

5.1.3. The LOG Compensator with Loop Transfer Recovery

Combining the LQ estimator with the LQ regulator results in

the overall LQG system given in Figure 5.1. The closed loop

dynamics are given by:

[k] = 1 K1+ [ rc + (5.27)

x KfC A-BKc-KfC J - Kf Kfl17

y = [C ] [x] + [.Q ]I (.8

(5.28)

where,

rc = system command input.

The poles of the closed loop system are the poles of the

regulator and the poles of the estimator combined.
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The LQG compensator transfer function is given by

KLQG(S) = Kc(sI-A+BKc+KfC) -Kf (5.29)

w

W Iy

U

C

+

A1

Figure 5.1. Block Diagram of the LQG System.

By breaking the system at point 1 in Figure 5.1 (the plant

output), the resulting loop transfer matrix is given by

To(s) = G(s)KLQG(S) (5.30)

where,

To(s) = loop transfer matrix for the loop broken at the
plant output

G(s) = plant transfer function matrix, G(s)=C$B (5.31)

KLQG(S) is given by Equation 5.29.

With the set-up defined, as q2 4 0, the loop transfer matrix

To(s) of the LQG system approaches the Kalman filter loop

transfer function. In other words, the LQG cystem recovers the
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desired performance of the Kalman filter design as q is increased

to infinity.

The overall design procedure using the LQG/LTR approach is

summarized as follows [6]:

Step 1: Define the design boundaries for system performance and

robustness. This requires definition of a multivariable perform-

ance profile, p(w), and an output multiplicative unstructured

uncertainty profile, im( ) . Chapter 4 of Reference 6 is an

excellent guide on how to form these profiles. Using p(w) and

lm(w), the design performance boundaries can be constructed.

Step 2: Select r and g such that ai[TKF(S)] meets all performance

requirements. It is shown in Reference 6 that at low frequency,

A ai[TFOL(S) ] z ai[TKF(S) ] (5.32)

where, TFL(s) = ctr. (5.33)

Thus, the designer can actively search for the appropriate r and

g that provides the desired loop shape by using the approximation

of Equation 5.32 without ever having to solve the LQE Riccati

equation. Once the proper choice of F and g is determined, the

procedure in Section 5.1.1 is used to complete the LQE design.

Step 3: Select H and p for the regulator. Choose a value for q

and perform the regulator design summarized in Section 5.1.2.

Step 4: Calculate the LQG compensator transfer function, KLQG(S),

and the resulting loop transfer matrix, T0(s).

Step 5: Compare ai[TO(s)] with ai[TKF(S)]. If they are signi-

ficantly different, increase q and repeat Steps 3 and 4. Con-

tinue until reasonable agreement between ai[T 0 ] and ai[TKF] is
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achieved.

Step 6: Form the closed loop state space model given by

Equations 5.27 through 5.28 and evaluate the closed loop time

responses. Also evaluate the control usage time histories.

These plots will provide insight to whether H and p were properly

selected. For example, if a regulated state is not forced to

zero fast enough, the weighting on this state can be increased

through H. Also, if control usage is too extreme, the penalty on

control usage can be increased by increasing p. Once H or p have

been changed, repeat Steps 3 through 5 and then re-evaluate the

closed loop time histories.

This methodology will be used for all the rate controller

designs presented in this chapter.
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5.2. Pitch Rate Controller Design

This section presents the pitch rate controller design for

Lambda using the LQG/LTR methodology. The design has the

following characteristics:

" only the elevator was used for control,

* only pitch rate, q, was regulated,

* a square system was used (number of inputs equal the
number of system outputs), thus only q was fed back to the
compensator, and

* elevator dynamics and a wind model were added to the open

loop plant model.

The pitch rate controller design will be described in detail in

order to illustrate the mechanics of LQG/LTR for rate controller

design.

5.2.1. Open Loop Model

The basic open loop, longitudinal, linear perturbation model

for Lambda was developed in Chapter 3. This model has the

following states and control inputs:

x(t) = [u(t), a(t), q(t), 0(t)]T  (5.34)

u(t) = [6e(t) ,  6f(t)] T (5.35)

with u in feet/second; a, 0, 6e,, and 6f in radians; and q in

radians/second. For the pitch rate controller design, this model

was adjusted as follows:

1. All angles were converted from radians to degrees. All rates
were converted frrm radians/second to degrees/second.

2. Flap control input was removed from the model. In actual
flight, flaps are not used for control.
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3. Wind disturbance dynamics were added to the model.

Appendix E provides a description of the wind model used.

4. Control actuator dynamics were added to the model.

5. Process noise, as outlined in Section 5.1.1, was added to the
model.

6. Pitch rate was the only state measured.

Table 5.1 summarizes the open loop longitudinal dynamics model,

incorporating the above adjustments, for the flight condition at

the midpoint of the flight envelope. It should be noted that r

is still arbitrary at this point (except for the scaling on the

wind noise). This model will be used for the development given

in Sections 5.2.3 through 5.2.5.

5.2.2. Performance and Robustness Specifications

All of the plant uncertainties and performance requirements

were modeled at the output of the plant. The following

requirements were chosen [6]:

" at least 26 db gain at w=0.1 rad/sec,

* at least 60 db gain at w=0.001 rad/sec, and

" model accuracy within 10% of the true plant up to
w=2.0 rad/sec and then increasing without bound at a rate
of 20 db/decade.

A singular value plot of the resulting performance boundaries is

given in Figure 5.2. The first two requirements ensure that the

controller will be Type-I over the normal bandwidth of the air-

plane's dynamics. This should allow for good command following

(with zero steady state error) and disturbance rejection at low

frequency. The high frequency bound ensures that the system will

attenuate high frequency sensor noise. It also characterizes the
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stability robustness of the closed loop system. This set of

requirements will be used on all rate controller designs

developed in this chapter.

Table 5.1. Open Loop Longitudinal Dynamics Model for the Flight
Condition at the Center of Lambda's FlighL Envelope

The model has the following form:

k(t) = Apx(t) + Bpu(t) + rE(t)

y(t) = Cpx(t) + q(t)

where,

x(t) = [u(t), a(t), q(t), O(t), 6e(t) , w(t) ]

u(t) = 6ecm(t)

and,

-0.0267 0.5615 0.000 -0.5615 0.000 0.5615
-0.2458 -2.872 0.9715 0.000 -0.1428 -2.872

Ap= -0.1049 -27.53 -1.641 0.000 -18.18 -27.53
0.000 0.000 1.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 -6.500 0.000
L 0.000 0.000 0.000 0.000 0.000 -2.450

S0.000
0.000
0.000 r r
0.000
6.500
0.000 0.0433

Cp= [0.000, 0.000, 1.000, 0.000, 0.000, 0.000]

Also, the white Gaussian process and measurement noises have the
following characteristics:

E[E(t) ]=0 E[q(t)]=0

E[E (t) ET (r =6 (t-T) E[(1 (t) T (r) ]=A6 (t_7) E[E (t)7T( ) 7, =0
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Figure 5.2. Singular Value Plot of Performance and Robustness
Boundaries for Lambda Rate Controller Designs.

5.2.3. Augmenting InteQrators to the Open Loop Model

A singular value plot (a-plot) of the unaugmented open loop

system is given in Figure 5.3. From this plot it is obvious that

integrators need to be augmented to the open loop system.

A single integrator can be added to the open loop dynamics

as outlined in Table 5.2. A a-plot of the augmented open loop

system is given in Figure 5.4. Again, the system does not have

Type-I characteristics. After augmenting yet another integrator

to the open loop plant, the singular value plot for the doubly

augmented system is given in Figure 5.5. The doubly augmented

open loop possesses Type-i characteristics and will be adopted as

the basic open loop system for which to begin controller design.
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Unaugmented Open Loop
4 0 . . ....... . ........ . ...- _,'_
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*c 0
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-80
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Figure 5.3. Unaugmented Open Loop Singular Value Plot.

Table 5.2. Process of Adding an Integrator to the Open Loop
Dynamics

u G()up GS)Yp

G. (s) = G((s)G(s)

Plant State Space: Integrator State Space:

Xp =Apxp + BpUp ki = Qxi + Iu

yp= CpXp + Oup up = Ix i + Ou

Augmented State Space:

x0 = Aaxa + Bau

Yp = CaXa + DaU

where,

A=[AP B] B=0=
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Figure 5.4. Augmented Open Loop Singular Value Plot.

Doubly Augmented Open Loop
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Figure 5.5. Doubly Augmented Open Loop Singular Value Plot.
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5.2.4. LOE Design

The poles and zeros of the doubly augmented system are given

in Table 5.3. Since the doubly augmented system has a nice loop

shape, r was set equal to B with the following scaling for the

wind model:

r = [0,0,0,0,0,0.0 4 3 2 5 4 ,0,1 ]T (5.36)
wind model noise scaling

Table 5.3. Characteristics of the Basic Open Loop (Doubly
Aucrmented) System

The doubly augmented system has the following form:

x(t) = Ax(t) + Bu(t) + rF(t)

y(t) = Cx(t) + r(t)

and the system transfer function is:

G(s) = C(sI-A) 'B = C$B

The poles of CtB are: The zeros of CtB are:

-2.2611 ± 5.1389i -0.0810
-0.0086 ± 0.3393i -2.6020
-6.500 -2.450
-2.450 0
0
0

Using the approximation given in Equation 5.32, A=1/i00 was

chosen. Table 5.4 outlines the Kalman filter design that

resulted using the methods given in Section 5.1.1. Figure 5.6 is

the corresponding singular value plot. This loop shape has a

reasonable crossover frequency and provides a good margin for

recovery.
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Table 5.4. Kalman Filter Desigin

A = 1/100

r = [0, 0, 0, 0, 0, 0.0433, 0, 1] T

Kf=-0.190,0.99 7 3,6 .1292,1.OOO,-2 .
8 4 9 3 ,-O.16 3 1,-4 .2 lO8 , _1O.OO]T

Poles (CIKf): Zeros (CPKf):

-1.9883 ± 5.6033i -2.4843 ± 5.4767i
-4.0328 ± 1.8232i -6.9359
-5.5279 -2.8833
-1.9684 -1.6854
-0.0801 -0.0808

0 0

Tkf with 1/u=100

20

40-

m -20 1
-40-

10-3 10-2 10-1 100 101 102 103

frequency, rad/sec

Figure 5.6. Singular Value Plot for the Kalman Filter Design
Given in Table 5.4.
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5.2.5. LOG/LTR

A sequence of LQG compensators were designed by constructing

an LQ regulator which recovered the properties of the LQ

estimator. The methodology presented in Sections 5.1.2 and 5.1.3

was used. Table 5.5 presents the final compensator design.

Figure 5.7 provides the singular value plot for the loop transfer

matrix, To(s), for q=0, p=l and Figure 5.8 is the corresponding

plot for q=1000, p=9999. These two plots illustrate the recovery

process as q is increased.

Table 5.5. LOG Compensator Design

Regulator:

q=l,000 p=9,999 H=[0,0,1,0,0,0,0,0]

Kc=[-2.1148,10.9746,1.2673,0.2844,1.0982,-1.6828,22.552,6.7160]

Poles(Kc-B):

-2.3508 ± 5.9398i
-5.6846
-3.8031
-3.4861
-2.4500
-0.0801

0

Compensator:

Poles (KLQG): Zeros(KLQG)

-1.6876 ± 8.1436i -2.2886 ± 5.1017i
-8.9045 ± 4.4218i -6.5114
-2.6658 -2.4905
-2.4045 -0.9676
-0.0801 -0.0843
0 0
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Figure 5.7. Singular Value Plot for T0 (s) with q=O, p=l.

To with q=1000, rho=9999
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Figure 5.8. Singular Value Plot for To(s) with q=1000, p=9999.
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The closed loop time response for pitch rate to a unit step

pitch rate command is given in Figure 5.9. The corresponding

elevator time response is given in Figure 5.10. It should be

noted that higher ratios of p/q were attempted to reduce the

amount of elevator deflection expended. However, the algebraic

Riccati software in MATLAB could not solve the LQ regulator

algebraic Riccati equations for the higher p/q values at this

flight condition. The numerical difficulties are due to the fact

that as p is increased, the regulator algebraic Riccati equation

(Equation 5.21) approaches the following Lyaponov equation:

AT + PA + Qc = 0 (5.37)

This Lyaponov equation has a unique solution if and only if the

matrix A is stable. For Lambda, the phugoid mode is unstable at

slow speed. The numerics are further complicated by the fact

that Q. is an 8x8 matrix of all zeros except for the third

position along the diagonal.

5.20



Pitch Rate Response to Unit Step Pitch Rate Command
1.8
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011
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time, sec

Figure 5.9. Closed Loop Time Response for Pitch Rate to a Unit
Step Pitch Rate Command.

Elevator Response to Unit Step Pitch Rate Command
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time, sec

Figure 5.10. Closed Loop Response for El-wator Deflection to a
Unit Step Pitch Rate Command.

5.21



Finally, the closed loop sensitivity for this point design

is given in Figure 5.11. The gain and phase margins for the

closed loop system can be obtained from the sensitivity plot by

using the following equations:

ISII. = max oi(S) (5.38)

GM = [-20*log(l + 1/111SI1.), -20*log(l-i/IIII®) ] (5.39)

PM = ± 2*sin' 1/(2111S1.)] (5.40)

where,

S = system sensitivity, magnitude

Is11. = infinity norm of the system sensitivity, magnitude

GM = iniependent gain margin, db

PM = independent phase margin, degrees

For this point design, the infinity norm of the system

sensitivity, gain margins, and phases margins were as follox.i:

IISII.=8.801 GM=[-2.690db,3.918db] PM=±20.92 °

These margins were too low for this to be considered a good

design. Thus, complete point designs were repeated at both the

high and low speed corners of Lambda's flight envelope. The

final design selected is summarized in the next section.

5.2.6. Final DesiQn

The final pitch rate controller design will now be

summarized.

The regulator gain, Kc, was chosen from the point design at

the high speed flight condition (most aft c.g. location). The

p/q ratio for this design was 9,090, almost a thousand times
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Figure 5.11. Closed Loop Sensitivity Singular Value Plot.

greater than that achieved at the midpoint flight condition.

MATLAB could not solve the LQR algebraic Riccati equation for

higher values of p/q at this flight condition.

Gain scheduling, as a function of flight speed, was

accomplished for the Kalman filter gains. The gains were

scheduled between the low speed and high speed point designs (aft

c.g. location). Thus, the Kalman filter gain, Kf, for any flight

speed, U, in Lambda's flight envelope is found as follows:

A = (U-76.0)/(168.9-76.0) (5.41)

Kf = Kf tow + A(Kf high - Kf to) (5.42)

where,

U = flight speed, feet/sec

K low= low speed filter gain
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Kf high = high speed filter gain

Table 5.6 summarizes the final pitch rate controller design.

The MATLAB macro PRATCONV.M is given in Appendix F. This macro

calculated the closed loop pitch rate and elevator time responses

to a unit step pitch rate command given the trimmed flight condi-

tion characteristics as inputs. Using the program, the closed

loop time responses to a unit step pitch rate command were gener-

ated for all four flight conditions comprising ths corners of

Lambda's flight envelope and for the flight condition at the cen-

ter of Lambda's flight envelope. These responses (calculated at

the aft c.g. location) are given in Figure 5.12. The closed loop

margins at these flight conditions are summarized in Table 5.7.

The overall pitch rate controller design yields reasonable

time responses and has satisfactory margins for all flight

conditions in Lambda's flight envelope. This is accomplished in

spite of the slow elevator servo used on the vehicle. Notice

that only one set of regulator gains, that from the high speed

point design, was used for all flight conditions. Because of the

high p/q ratio achievable at the high speed condition, the

resulting gain matrix, Kc, produced better closed loop tracking

performance while using significantly less elevator deflection

than any other set of regulator gains from any other point

design. It should also be noted that using gain scheduling for

the Kalman filter was not absolutely required. However, the

increase in overall compensator tracking performance was

significant, thus justifying the added complexity.
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Table 5.6. Summary of the Final Pitch Rate Controller Design

Kalman Filter:

g=1/100 F=[0,0,0,0,0,0.0433,0,1]

Kalman filter gains at,

U=76 fps U=168.9 fps

-0.0211 -0.0024
1.0498 0.9747
5.7190 7.7262

Kf Low=  1.0000 Kf high=  1.0000

-4.2724 -2.3130
-0.0982 -0.1562
-5.7255 -3.6393
-10.000 -10.000

Regulator:

p=5xlO7 q=5,500 H=[0,0,1,0,0,0,0,0]

Kc=[-0.0781,0.0072,0.0251,0.0385,-0.0558,-0.2936,2.2065,2.1007]

Table 5.7. Closed Loop Margins for the Final Pitch Rate
Controller Design

Xcg flight lower upper phase
speed margin margin margin

(in) (fps) (db) (db) (deg)

45.8 76.0 -3.2715 5.3101 ±26.440
45.8 168.9 -3.8708 7.1605 ±32.610
47.8 168.9 -3.9227 7.3479 ±33.169
47.8 76.0 -3.2829 5.3409 ±26.553
46.8 122.5 -3.7221 6.6507 ±31.030
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5.3. Roll Rate Controller Design

This section summarizes the final design of the roll rate

controller for Lambda using LQG/LTR. This design has the

following characteristics:

* the lateral-directional perturbation model developed in
Chapter 3 was used with the heading angle state, 7, removed
(MATLAB could not solve the LQE algebraic Riccati equation with T
as a state variable),

" both aileron and rudder were used for control,

" both sideslip and roll rate were regulated and fed back to
the compensator (thus producing a square system), and

* aileron dynamics, rudder dynamics, and a wind model were
added to the open loop plant model.

The performance and robustness specifications for this

design were the same as that used for the pitch rate controller

design. The open loop system had to be doubly augmented with

integrators to achieve a loop shape with Type-i characteristics.

As with the pitch rate controller design, the Kalman filter

used gain scheduling, as a function of flight speed, to signi-

ficantly enhance closed loop tracking performance throughout

Lambda's flight envelope. The regulator gains resulted from the

point design for the flight condition at the middle of Lambda's

flight envelope. Table 5.8 summarizes the characteristics of the

final roll rate controller design. The roll rate controller

macro, RRATCONV.M, is given in Appendix F. The closed loop

margins for the final roll rate controller design are given in

Table 5.9 and the closed loop time responses (for the aft c.g.

location) to a unit step roll rate command are given Figure 5.13.

The overall roll rate controller design produces reasonable
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time responses which do not require significant aileron deflec-

tion to achieve. The maximum roll rate peak overshoot of approx-

imately 1.4 for roughly all flight conditions offers room for

design improvement. The gain and phase margins are all quite

satisfactory. It should also be noted that this controller not

only tracks roll rate command well, but it also regulates

sideslip at the same time.

Table 5.8. Summary of the Final Roll Rate Controller Design

Kalman Filter:

A=l/loo r=B with correction for wind

4.8762 -0.0339 5.4431 -0.0254
-0.0339 7.8567 0.9747 11.772
0 1.0 0 1.0

Kf low= -11.771 0.0052 Kf high=  -15.306 -0.0691
0.5145 3.4439 0.4548 1.9071
9.9592 -0.3439 6.4415 -0.2202
0.1227 0.1758 0.0529 0.0964
0.6330 5.1064 0.6045 3.4052
11.562 -0.4452 8.0256 -0.3443
0.6455 9.9791 0.8272 9.9657
9.9791 -0.6455 9.9657 -0.8272

(U=76 fps) (U=168.9 fps)

Regulator:

p=5,000 q=15 H=C

0.0128 -0.0042
0.0033 0.0014
0.0056 0.0079
0.0008 0.0023
0.0526 0.0101

KC = -0.0034 -0.0024
-0.0008 -0.0142
1.6477 -0.0069

-0.0673 0.2667
1.8151 -0.0292

-0.0292 0.7298
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Table 5.9. Closed Loop MarQins for the Final Roll Rate
Controller Design

Xcg flight lower upper phase
speed margin margin margin

(in) (fps) (db) (db) (deg)
--------------------------------------------
45.8 76.0 -3.1594 5.0161 ±25.342
45.9 168.9 -4.1065 8.0559 ±35.182
47.8 168.9 -4.1203 8.1122 ±35.336
47.8 76.0 -3.1405 4.9677 ±25.158
46.8 122.5 -3.8260 7.0029 ±32.131
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Figure 5 13. Closed Loop Time Responses to a Unit Step Roll Rate

ComandfortheFinal Roll Rate Controller Design.
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5.4. Yaw Rate Controller Design

This section summarizes the final designs of the yaw rate

controllers for Lambda using LQG/LTR. Two yaw rate controllers

were designed. The first controller, which regulates roll angle

and yaw rate, is presented in Section 5.4.1. The second

controller, which regulates sideslip and yaw rate, is discussed

in Section 5.4.2.

5.4.1. Yaw Rate Controller with Roll Angle Regulated

This type of yaw rate controller is to be used for scenarios

in which a crabbing turn with wings level is required. This

situation often arises during final approach for landing in

crosswind conditions. This design has the following

characteristics:

* the lateral-directional perturbation model developed in
Chapter 3 was used with the heading angle state removed,

" both aileron and rudder were used for control,

" both roll angle and yaw r e were regulated and fed back
to the compensator (again produc-tig a square system), and

* aileron dynamics, rudder dynamics, and a wind model were
added to the open loop system.

The performance and robustness specifications for this

design were those given in 5.2.2. Again, the open loop system

had to be doubly augmented with integrators to achieve a loop

shape with Type-i characteristics.

The final yaw rate controller design uses gain scheduling,

as a function of flight speed, on the Kalman filter gains to

improve tracking performance. The regulator gains were selected

from the high speed flight condition point design. Table 5.10
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controller macro, YRATCONV.M, is given in Appendix F. The closed

loop margins for the final yaw rate controller design are given

in Table 5.11 and the closed loop time responses (for the aft

c.g. location) to a unit step yaw rate command are given in

Figure 5.14.

The overall yaw rate controller design produces time res-

ponses that look fairly good. The rudder deflections are some-

what high, but are acceptable for a yaw rate controller. The

margins for this controller, however, are quite low.

Table 5.10. Summary of the Final Yaw Rate Controller (DesiQn #1)

Kalman Filter:

A=i/I000 r=B with correction for wind

0.3134 -1.1759 0.0657 -1.1145
45.364 -4.6276 79.729 -9.3266
9.5159 -0.4185 12.614 -0.5844

Kf Iow= -0.4185 8.5273 Kf high =  -0.5844 13.195
16.280 -2.3618 10.510 -1.7524
-3.1173 -12.541 -2.7698 -6.7477
0.4056 -0.6631 0.1756 -0.3826

21.724 -3.4566 15.634 -3.1244
-4.0642 -17.325 -4.0222 -11.095
31.052 -5.9806 30.550 -8.1682
-5.9806 -31.052 -8.1682 -30.550

(U=76 fps) (U=168.9 fps)

Reulator:

p=250,000 q=1000 H=C

-0.3534 -1.3977
0.2623 -0.1050
1.9493 -0.6328
0.2312 0.5618
3.7852 -1.1872

K= -0.4340 -1.1007
-0.0403 0.6506
15.242 -1.1797

-0.2341 3.3968
5.5184 -0.1741

-0.1741 2.6006
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Table 5.11. Closed Loop Margins for the Final Yaw Rate
Controller (Design #1)

Xcg flight lower upper phase
speed margin margin margin

(in) (fps) (db) (db) (deg)

45.8 76.0 -1.6773 2.0807 ±12.228
45.8 168.9 -1.5512 1.8897 ±11.221
47.8 168.9 -1.5395 1.8724 ±11.128
47.8 76.0 -1.6780 2.0817 ±12.233
46.8 122.5 -1.6981 2.1128 ±12.396

.2 .- Sp..d - . Eg Speed (-.and ltidpoit R.80-..s0.06. W- Speed (-. Igh Speed (--) d Midpoint .4R.9p.noe

12 0.04
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Figure 5.14. Closed Loop Time Responses to a Unit Step Yaw Rate
Command for the Final Yaw Rate Controller (Design #1).
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5.4.2. Yaw Rate Controller with Sideslip Regulated

The second yaw rate controller design will allow Lambda to

perform coordinated turns in response to yaw rate command inputs.

The development of this design parallels that of the last yaw

rate controller, except that sideslip is regulated and fed back

to the compensator instead of roll angle. However, this

controller design had to address difficulties not inherent in any

of the other rate controllers. Therefore, this design will be

described in some detail.

The open loop plant for the high speed flight condition has

the following system poles and zeros:

Poles(CB): Zeros(CB):

-0.9901 ± 3.8266i -40.711
-7.1422 -1.6890
-6.20 16.041
-5.50
-1.6890
0.0157

This system is both unstable and non-minimum phase. This means

full recovery of the Kalman filter loop shape with the regulator

as q o o is not possible [6].

Again, the basic plant was doubly augmented with integrators

to provide a loop shape with Type-i characteristics. The Kalman

filter design selected targeted a bandwidth of 10 rad/sec and

provided plenty of room for whatever recovery was possible by the

regulator. Figure 5.15 is the resulting loop shape.

Several combinations of p and q were tried, but p=10,000 and

q=10 appeared to provide the best recovery while still meeting

performance and robustness requirements. Equal penalty weighting
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on the regulated states, P and r, did not produce acceptable

closed loop time responses. With equal weighting, P was well

regulated but r had very large overshoot and extremely long

settling time. Thus, the penalty on yaw rate tracking error was

increased while the sideslip error penalty was held constant. As

the penalty on r increased, both the overshoot and settling time

on the yaw rate response were drastically reduced; however,

sideslip began to significantly deviate from zero. The H matrix

that seemed to produce the best compromise had the penalty on yaw

rate 100 times greater than that on sideslip. Figure 5.16 shows

the resulting loop shape for G(s)K(s) for the regulator with

p=10,000, q=10, and H as just described. Notice that the

recovery of the Kalman filter loop shape is really fairly poor.

This highlights the impact that an unstable, non-minimum phase

system has on recovery. This will be discussed further in the

next chapter.

Table 5.12 summarizes the final yaw rate controller design.

It was absolutely necessary with this controller to schedule the

Kalman filter gains as a function of flight speed in order to

improve compensator performance. The controller macro,

YRATCONVB.M, is given in Appendix F. The closed loop margins for

the final yaw rate controller design are given in Table 5.13, and

the closed loop time responses (for the aft c.g. location) to a

unit step yaw rate command are given in Figure 5.17.
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Figure 5.15. Kalmian Filter Loop Shape for the Yaw Rate
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Figure 5.16. G(s)K(s) Loop Shape for the Yaw Rate Controller
(Design #2).
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Table 5.12. Summary of the Final Yaw Rate Controller (Design #2)

Kalman Filter:

A=i/iooo r=B with correction for wind

5.1598 0.1924 4.9195 0.3475
54.167 16.541 116.71 59.179
33.939 11.064 74.366 33.031

Kf lo= 0.1924 5.7109 Kf high=  0.3475 8.4798
13.799 3.6141 11.855 5.6622

-1.5537 -6.9404 -0.8943 -4.7502
0.1177 -0.1568 0.0486 -0.0815
15.606 3.7938 13.594 6.1893

-1.3997 -8.5124 -0.4654 -6.2006
9.9511 0.9878 9.6064 2.7779
0.9878 -9.9511 2.7779 -9.6064

(U=76 fps) (U=168.9 fps)

Regulator:

p-250,OUO q=i000 H = [1 0 0 0 0 0 0 0 0 0 0L0 0 0 100 0 0 0 0 0 0 0

-0.0339 -0.2660
0.0038 -0.0365
0.0547 -0.2058
0.0755 0.1872
0.0795 -0.4508

Kc = -0.1974 -0.4443
0.1590 0.4466
2.3190 -0.5335
0.1624 1.0663
2.1511 -0.1029

-0.1029 1.4567

Table 5.13. Closed Loop Margins for the Final Yaw Rate
Controller (Design #2)

Xcg flight lower upper phase
speed margin margin margin

(in) (fps) (db) (db) (deg)

45.8 76.0 -1.4104 1.6846 ±10.115
45.8 168.9 -1.4335 1.7178 ±10.295
47.8 168.9 -1.4671 1.7663 ±10.558
47.8 76.0 -1.3794 1.6407 ± 9.874
46.8 122.5 -1.7678 2.2220 ±12.960
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Figure 5.17. Closed Loop Time Responses to a Unit Step Yaw Rate
Command for the Final Yaw Rate Controller (Design #2).

overall, it is immediately obvious that it is difficult to

achieve coordinated turns with the Lambda URV. Yaw rate response

to a step yaw rate command is characterized by large overshoot

and long settling time while sideslip significantly deviates from

zero. Closed loop r and 0 performance could be improved but only

if significantly larger control surface deflections are allowed.
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5.5. Discussion of Rate Controller Designs Using LOG/LTR

The following discussion highlights the main points of the

rate controller designs just presented and offers insight on how

the designs could be improved.

It was observed that once a good set of regulator gains were

found (no matter what the flight condition they were specifically

designed for), these gains provided the same level of performance

for all flight conditions in Lambda's envelope. This was not

true for the Kalman filter gains. Gain scheduling of the Kalman

filter greatly increased the compensator's overall performance.

Lambda has a full array of sensors available. It has the

capability to measure u, a, q, and 0 in the longitudinal

reference frame and P, p, 0, and r in the lateral-directional

reference frame. However, in the pitch rate controller design,

only q was fed back to the compensator; in the roll rate

controller, P and p were fed back; and in the yaw rate

controller, onily r and 0 or r and P were fed back. Using the

same set of regulator gains, the performance of the compensator

could be improved by feeding back the additional states available

to the Kalman filter.

The main stumbling block encountered in designing the

controllers was in solving the LQR algebraic Riccati equation.

The software used in MATLAB was highly sensitive to large p/q

values. Thus, it was somewhat difficult to arrive at a set of LQ

regulator gains that did not require large control surface

deflections or rates. The level of difficulty encountered varied
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from one flight condition to another. For the pitch and yaw rate

controllers, the best set of LQR gains were arrived at using the

high speed flight conditions. The best regulator gains for the

roll rate controller were calculated at the flight condition for

the center of the flight envelope. The main point, however, is

that in order to obtain good performance, the designer is forced

to high p/q ratios due to the limited control authority inherent

in the Lambda URV. If Lambda had faster control servos, lower

values of p could be used to achieve the same, or better, levels

of closed loop performance. Thus, the numerical problems with

the Riccati equations could be side-steppcd altogether.

Each rate controller design for Lambda was plagued by

unstable dynamics in the open loop plant. At slow speed, the

pitch rate controller's open loop plant has unstable phugoid

roots. All lateral-directional rate controllers have plants with

unstable spiral modes. LQG/LTR is fairly successful at providing

compensators with adequate performance when slightly unstable

poles in the open loop plant are involved. However, the open

loop plant in the second yaw rate controller design (r, 0

regulated) was also non-minimum phase. Consequently, it was

difficult to design an LQG/LTR controller with acceptable

performance.

The final pitch and roll rate controller designs had margins

adequate to be further considered for actual implementation.

Both the final yaw rate controller designs had very marginal

performance. Before actual implementation of any of these
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controllers, the continuous time designs would need to be

discretized and re-tuned. Reference 21 is an excellent source on

how to conduct this process.

In the next chapter, the LQG/LTR rate controllers will be

compared and contrasted with the controllers developed in

Chapter 4. These comparisons will provide further insight into

the mechanics of the LQG/LTR methodology.
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6. Comparisons and Discussion

This chapter summarizes the controller designs accomplished

in Chapters 4 and 5. First, a general discussion of the closed

loop time response performance that can be expected from the rate

controllers, based on the airplane's stability characteristics

and control authority, is given. The rate controllers from

Chapters 4 and 5 are then directly compared in Section 6.2. The

final results are given in Section 6.3 along with recommendations

for future design.

6.1. Discussion of Rate Controller Performance

Closed loop rate response performance is difficult to

characterize. Military standards for flying qualities specify

levels of performance for basically attitude responses. For

example, levels of flying quality are completely characterized

for the short period response of angle of attack for piloted

aircraft in MIL-STD-1797A. Usually, rate control is part of an

overall attitude flight control system whose performance can be

judged against military standards. Therefore, there has

historically been no reason to pursue performance specifications

for rate responses.

The Flight Control Division has attempted to specify closed

loop performance on the rate time responses to unit step rate

command inputs for Lambda. Time response bounds were constructed

for the closed loop pitch, roll, and yaw rate time responses.

These are shown in Figure 6.1.
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within the performance bounds for all flight conditions in

Lambda's flight envelope. Unfortunately, at the time of

Wheaton's work, a good model of Lambda's stability and control

characteristics did not exist. The key differences between

Wheaton's models from those developed in this thesis were in the

estimation of the control actuator dynamics. Wheaton used the

following model for all actuators:

6s) = 324 = 324 (6.1)
c(S s2+2.s+2 52+2(0.71) (18.0)s+182
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Whereas, the servo models used in this thesis, which were

estimated from actual flight test data, were as follows:

= 6.5 (6.2)
6 e cam s+6.5

S= 5.5 (6.3)
6 A com s+5.5

6= 6.2 (6.4)
6 R coin s+6.2

Thus, Wheaton's models used equivalent first order lag constants

that were three times faster than that exhibited by the actual

airplane.

To meet the upper bound time response on pitch rate from

Figure 6.1, the dominant closed loop roots would need to have a

natural frequency of 10.0 rad/sec and damping ratio 0.40. Using

Wheaton's servo model, this is a realistic objective. However,

for the actual airplane this means the dominant closed loop poles

will need to be placed beyond the pole of the actuator. A more

realistic placement of the dominant closed loop poles would be at

a natural frequency of 5.5 rad/sec and a damping ratio of 0.40.

Using wn=5.5 rad/sec, E=0.40, and the following approximations,

(taken from Reference 22)

Ca= (1 - E/0.6)*i00 (%) (6.5)

tr = 1.8/o n  (sec) (6.6)

t s = 4. 6/(E(n) (sec) (6.7)

where, Mp - maximum peak overshoot to a unit rate input command

tr rise time

t- settling time
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n = natural frequency, rad/sec

S=-damping ratio

would result in a closed loop pitch rate time response to a unit

step pitch rate command with the following characteristics:

MP= 331/%

tr = 0.327 sec

ts = 2.09 sec

This response would not fall within the pitch rate bounds shown

in Figure 6.1. Recall from Figure 5.12 for the midpoint flight

condition, the closed loop time response from the LQG/LTR

controller had the following characteristics:

MP = 40%

tr = 0.5 sec

ts = 3.0 sec

which corresponds to a wn z 3.5 rad/sec and { = 0.35. Thus,

LQG/LTR provided a controller design that has reasonable closed

loop pole placement with respect to the dynamics of the elevator

servo.

Wheaton's upper bounds on roll rate and yaw rate require the

closed loop dominant pole to be placed at s=-5 and s=-1.25,

respectively. This corresponds to closed loop time responses

with the following characteristics:

Response M tr (sec) t, (sec)
roll rate 0.0 0.44 0.78
yaw rate 0.0 1.76 3.13

These are reasonable objectives to expect for rise time and

settling time; however, it is probably optimistic (due to the
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nature of the open loop plant) not to expect oscillatory closed

loop response, especially with yaw rate.

Table 6.1 is a summary of closed loop time response

characteristics that can be used as a yardstick with which to

measure the final controller designs in Chapters 4 and 5. It

should be noted that these objectives are arbitrary and are

offered to serve more as means of comparison between the closed

loop rate responses of this thesis and those of Reference 2.

Table 6.1. Closed Loop Time Response Performance Objectives

Response tr (sec) t
pitch rate 40 0.50 3.00
roll rate 0.0 0.44 0.78
yaw rate 0.0 1.76 3.13

In the next section, not only will the closed loop time

responses of the two design techniques used in this thesis be

compared, but the compensator dynamics, loop shapes, and phase

margins of the final designs will also be compared.
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6.2. LOG/LTR Versus Classical Rate Controller DesiQn

This section provides a direct comparison between LQG/LTR

and classical design techniques for each of the final rate

controller designs (with gain scheduling implemented). All

comparisons will be for the flight condition at the center of

Lambda's flight envelope.

6.2.1. Pitch Rate Controller Comparisons

To begin, the open loop system has the following poles and

zeros:

Poles(CIB): Zeros(C4B):

-2.2611 ± 5.1389i -2.6020
-0.0086 ± 0.3393i -2.45
-6.5 (servo) -0.0810
-2.45 (wind) 0

Thus, the open loop plant is stable but has phugoid roots that

have low frequency and light damping. Also, the servo dynamics

are relatively slow. Such a plant presents a challenge for any

controller design.

Figure 6.2 compares the closed loop pitch rate time res-

ponses to a unit step pitch rate command for the two final

controller designs. The responses exhibit the following

characteristics:

Response _ Mr (sec) s (sec)
LQG/LTR 40 0.50 3.00
Classical 70 0.05 1.00

The LQG/LTR approach provided a much better time response with

respect to the workload placed on the elevator actuator. In

order to lower steady state error, the classical rate controller

6.6



was forced to use high gains. This placed the dominant closed

loop poles for this design at a high natural frequency at the

expense of system damping. By doubly augmenting the open loop

system, the LQG approach began with a Type-I system. Thus, the

focus was shifted to closed loop pole placement that did not

require an excessive amount of control power to obtain. By

increasing the control usage penalty, p, closed loop pole

placement was kept near the elevator servo root.

LQG(-) vs Classical(--) Rate Controller Design
1.8

1.6

1.4

1.2

0.8

- 0.6

0.4

0.2

0L
0 1 2 3 4 5 6 7 8 9 10

time, sec

Figure 6.2. Closed Loop Pitch Rate Time Response Comparisons.

The difference in controllers can readily be observed by

directly comparing the root locus of the final single-input,

single-output compensator designs. This is done in Figure 6.3.

Table 6.2 summarizes the pole/zero location for the compensator

and closed loop system for the two designs.
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Table 6.2. Comparison of Pitch Rate Controller Dynamics.

Compensator: Closed Loop:
LOG/LTR Classical LOG/LTR Classical

Gain: -30.9 -10.0

Poles: Poles

-1.9438 ± 6.5950i -4.0 -2.5303 ± 5.9182i -3.2811 ± 34.590i
-6.5769 ± 3.0869i 0 -2.2598 ± 5.1467i -3.1896 ± 0.4610i
-2.9291 -5.7497 -2.0140
-2.2634 -6.4938 -0.0842
-0.0800 -3.6690 ± 1.5735i
0 -1.9846
0 -1.0482 ± 1.0024i
0 -0.0151 ± 0.2881i
0 -0.0801

-2.45
0

Zeros: Zeros:

-2.2587 ± 5.1369 -3.0 -2.2587 ± 5.1369i -2.75
-0.0136 ± 0.2925i -2.75 -6.5010 -3.0
-6.5010 -2.6020 -2.6020
-0.6615 -2.4536 -0.0810
-2.4536 -0.6615

-0.0136 ± 0.2925i
-0.0801
-2.45
0

The following comparisons between the two design approaches

can be made:

1. No matter how high the gain, the classical system will never

be driven unstable (within the accuracy of the linear model);

this is not true for the LQG controller. However, this is really

a minor point.

2. The LQG/LTR compensator attempts to invert the open loop

plant. Compensator zeros are placed on top of the plant poles.

Then, LQG/LTR re-defines the system dynamics with the placement
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of the compensator poles and remaining zeros. (The order of the

compensator is equal to the order of the doubly augmented plant.)

Plant inversion is heavily dependent on the quality of the Kalman

filter. Obviously, if the filter had not estimated the phugoid

roots well, the closed loop time response may have displayed

undesirable, slowly dying oscillations. Without scheduling the

Kalman filter gains, this is exactly what resulted in the time

responses at flight conditions different form the point design.

Thus, the LQG/LTR characteristic of plant inversion makes

scheduling the Kalman filter gains a necessity.

3. LQG/LTR is a frequency domain methodology. However, the

LQG/LTR root locus in Figure 6.3 provides insight to what happens

in the s-plane as the design is being worked in the frequency

domain. First, LQG/LTR inverts the plant as described above.

For a stable, minimum phase system, it accomplishes this task

almost totally. Then, the designer forms a desired Kalman filter

loop shape in the frequency domain. If total recovery were

allowed at this point by setting q=w, the resulting root locus

would have the closed loop poles placed so that the closed loop

system had gain and phase margins of [6]:

-1/2 < GM < o

-60 ° < PM < 60

However, infinite control power would be required. Therefore,

the recovery process, in effect, performs a trade-off between

gain margin, phase margin, and control usage when selecting the

final compensator pole locations and gains.
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4. Notice that by placing a heavy penalty on control usage, the

closed loop poles for the LQG/LTR system all have natural

frequencies less than 6.5 rad/sec.

5. The complexity of the LQG/LTR methodology is readily apparent

from the root locus. It is highly unlikely that a designer using

classical techniques could arrive at such a pole/zero placement

for the compensator. Inverting the plant may be obvious, but the

remaining pole/zero placement would remain a mystery.

Figure 6.4 compares the loop shapes for the system transfer

function, G(s)K(s), for the two design approaches. From this

figure, the following comments can be made:

1. The classical design's loop shape is not Type-l; the LQG loop

shape is. If an integrator is added to the classical compensa-

tor, the resulting classical loop shape will be Type-i and will

look very similar to the LQG system in the frequency domain.

However, adding the integrator to the classical root locus forces

the short period roots unstable at a relatively low gain (Kql).

2. The classical controller yields a system with a significantly

higher bandwidth and only -20 db/decade roll-off at high fre-

quency. Thus, the classical rate controller design will be more

susceptible to the negative effects of high frequency noise. A

high frequency pole could be augmented to this controller to

provide the system with better high frequency roll-off.

3. The higher system gain at low frequency for the LQG system

will result in better command tracking and better disturbance

rejection.
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The corresponding phase margins for these systems are as follows:

Method PM
LQG/LTR ± 31'
Classical ± 11

LQG(-) vs Classical(--) Loop Shape for Pitch Rate Controller

~ 50 - ------- -~ ----

-50 ....

-100
-150-

-250
10- 10-2 10- 100 101 102 103

frequency, rad/sec

Figure 6.4. G(s)K(s) Loop Shape Comparisons for the Pitch Rate
Controllers.

Overall, the LQG/LTR approach for this controller produced a

better design than did the classical approach. This was due

mainly to the structure present in the LQG/LTR methodology.

LQG/LTR allows the engineer the freedom to design a desired loop

shape in the frequency domain and then force the overall closed

loop system to recover those desired loop characteristics. The

resulting system dynamics are a compromise between desired

margins (performance and robustness) and control power usage. In

retrospect, the performance of the classical compensator may be

improved by adding another integrator to the system.
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6.2.2. Roll Rate Controller Comparisons

The open loop system characteristics for the two design

approaches are given in Table 6.3.

Table 6.3. Open Loop System Dynamics for the Roll Rate
Controllers.

Classical (P/6Ail LOG/LTR (C$B):

Poles: Zeros: Poles: Zeros:

-0.7275 ± 2.7933i -0.7089 ± 2.7275i -0.7275 ± 2.7933i -69.757
-5.1930 0 -5.1930 -1.225
0.0213 0.0213 0

-5.50 (servo) -5.50 (servo)
-6.20 (servo)
-1.225 (wind)

Note: y=[P,p]T

Notice that the open loop plant is slightly unstable.

Figure 6.5 compares the closed loop roll rate time responses

to a unit step roll rate command input for the two design

approaches. The responses have the following characteristics:

Response ____M tr (sec) ts (sec)

LQG/LTR 40 0.50 3.50
Classical 0 0.25 0.50

The classical approach appears to have produced a much better

roll rate controller. Its time response meets the desired

performance listed in Table 6.1.
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LQG(-) vs Classical(--) Rate Controller Design
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Figure 6.5. Closed Loop Roll Rate Time Response Comparisons.

The compensators for the two designs are vastly different.

The compensator for the classical design is

K(s) = 0.15 (s+3/s (6.8)

This is a very simple compensator. The LQG/LTR compensator is a

2x2 matrix transfer function -- (0-0,,) and (p-pc)) are the

inputs, 6A and 6R are the outputs. The compensator for the

classical SISO system is easy to understand. The plant itself

has zeros that nearly cancel the dutch roll roots. Thus, all the

compensator needs to do is pull the unstable spiral into the left

hand sidc of the s-plane while slowly trading-off system damping.

Notice that one compensator works for the entire flight envelope;

no gain scheduling is required. The LQG/LTR compensator,
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however, inverts the plant and replaces the original dynamics

with those selected through the recovery process. The

transmission poles and zeros of the LQG/LTR compensator are as

follows:

Poles(KLG): Zeros (KLQG):

-8.7458 ± 3.4275i -0.7245 ± 2.7928i
-2.5358 ± 6.5506i -5.1700
-0.7555 ± 3.5167i -0.2714
-2.9465 ± 2.1609i -5.5164
-6.3376 -6.2000
-1.2204 -1.2253
0 0

The first four zeros are the compensator's attempt to cancel the

poles of the plant. Notice that the LQG/LTR methodology does not

produce an unstable compensator zero to cancel the spiral root.

Instead it produces a compensator zero that is basically a mirror

image of the unstable spiral root about the imaginary axis. This

is due to the fact that the Kalman filter can never be monminimum

phase [6]. The poles of the compensator are then left to set the

performance of the closed loop system. The order of the LQG/LTR

compensator is the same as the order of the doubly augmented open

loop plant.

Figure 6.6 compares the loop shapes for the transfer

function, G(s)K(s), for the two roll rate controller designs.

Notice that the classical system is not Type-l. The LQG approach

appears to have produced a better loop shape. The LQG system

should exhibit better low frequency performance (better tracking

and disturbance rejection) and better high frequency noise

rejection. However, if a high frequency pole were added to the
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classical system, the two controller designs would have very

similar hiqh frequency lGop shapes.

LQG(-) vs Classical(--) Loop Shape for Roll Rate Controller
1501

100
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- 3  
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-
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-
1 100 10, 102 10 3

frequency, rad/sec

Figure 6.6. G(s)K(s) Loop Shape Comaprisons for the Roll Rate
Controllers.

The phase margins for these two designs were:

Method PM
LQG/LTR ± 32*
Classical ± 71 °

There is quite a disparity in phase margin for the two closed

loop systems. However, it must be realized that the LQG/LTR

approach guarantees a phase margin of ±60 ° for q=oo (full

recovery) if the transmission zeros of the open loop plant are

ali in the left-half of the s-plane. However, for this design

q=15 which is much less than infinity. Thus, the phase margin is

expected to be much less than 60 °.
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The main limitations to the LQG/LTR approach, in this case,

were as follows:

1. Both roll rate and sideslip were being regulated. The

classical approach only focused on roll rate.

2. If the ratio p/q could be increased, the closed loop time

response of the LQG/LTR controller would approach that of the

classical controller. However, higher ratios of p/q drove the

loop shape below the desired performance barriers for this

design. Notice that the loop shape of the classical approach

does, indeed, penetrate the LQG performance barriers.

3. The LQG/LTR approach attempts to invert the plant. The

unstable spiral root, therefore, causes some degredation in

overall system performance.

The LQG/LTR design does have an advantage in the fact that both

sideslip and roll rate are regulated. If the low frequency

performance barriers are relaxed, a closed loop time response

similar to that of the classical controller could be approached

by increasing the p/q ratio. The LQG design also provides a loop

shape that has good roll-off characteristics at high frequency

for good noise rejection. However, if maintaining zero sideslip

is not a priority, then the classical design is far superior.

Figure 6.7 compares the closed loop sideslip response to a

unit step roll rate command for the two controllers. From this

figure, it appears that the added complexity of regulating

sideslip is probably not justified. For example, Lambda would

travel through less than 5 degrees of sideslip after 10 seconds
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for a 10 deg/sec roll rate command input; however, it would have

rolled through 100 degrees of bank angle in the same amount of

time. By just adding a high frequency pole, the classical

controller could have good low frequency tracking, good overall

bandwidth, and adequate high frequency noise rejection.

Therefore, the less complex, classical roll rate controller is

probably the better overall design for Lambda.

LQG(- ) vs Classical(--) Beta Time Response
0.5 -

0.4b -

0 .
3

-

L 0.2-
" O---- .. ."'

a

0.1

0'

0 1 2 3 4 5 6 7 8 9 10

time. se,

Figure 6.7. Comparison of Closed Loop Sideslip Response for the
Roll Rate Controllers.
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6.2.3. Yaw Rate Controller Comparisons

The following three yaw rate controller designs were

developed in this thesis:

#1: a classical, SISO yaw rate controller,

#2: a LQG/LTR controller that regulated yaw rate and bank
angle, and

#3: a LQG/LTR controller that regulated yaw rate and
sideslip.

The first and third controller designs above will be compared in

this section. The open loop system for the second design was

unstable and minimum phase. Therefore, the specifics of the

LQG/LTR approach for this design are similar to that discussed in

the last section. However, the open loop system for the third

design is unstable and non-minimum phase. Therefore, further

insight to the LQG/LTR methodology can be gained by examining

this design.

The transmission poles and zeros of the open loop system for

designs #1 and #3 are given in Table 6.4.

Table 6.4. Open Loop System Dynamics for the Yaw Rate
Controllers.

Classical (r/6IL. LOG/LTR (CB):

Poles: Zeros: Poles: Zeros:

-0.7275 ± 2.7933i -0.0403 ± 0.3216i -0.7275 ± 2.7933i -36.279
-5.1930 -5.2159 -5.1930 -1.225
0.0213 0.0213 18.384

-6.20 (servo) -5.50 (servo)
-6.20 (servo)
-1.225 (wind)

Note: y=[P,r]T

The open loop plant for both systems is slightly unstable.
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However, the open loop system for the LQG/LTR approach is also

non-minimum phase.

LQG(-) vs Classical(--) Rate Controller Design

1. 4

1.2r

0 I 6 7 8 9 I

time, se

M 0 .

0. 6

0. 4

0.2L

0 1 2 3 4 5 6 7 0 9 1U

time, sec

Figure 6.8. Closed Loop Yaw Rate Time Response Comparisons.

Figure 6.8 provides the closed loop yaw rate time responses

to a unit step yaw rate command input for the two design

approaches. The time responses have the following

characteristics;

Response M_. (sec) t, (sec)

LQG/LTR 60 0.75 6.50
Classical 45 0.10 > 10

Notice that n~ither time response meets the performance

objectives proposed in Table 6.1. The classical design exhibits

a quick initial oscillatory response followed by a slowly dying,

low frequency oscillation. In order to minimize the long period
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oscillation in the classical controller, high gains had to be

used which aggravated the initial oscillatory response. Both

methodologies were plagued by the fact that the open loop system

has zeros close to the origin which are very lightly damped, and

the spiral mode is unstable.

In the classical design, the lightly damped zeros near the

origin draw a pair of closed loop poles into them. These poles

cause the long period oscillation in the closed loop time

response. As compensator gain is increased, their effect is

decreased due to near cancellation with the zeros; however,

overall system damping is sacrificed. The transmission poles and

zeros of the LQG/LTR compensator are as follows:

Poles (KLQG): Zeros(KLQG):

-1.9338 ± 5.5903i -0.6165 ± 2.6486i
-0.2024 ± 2.6727i -0.1499 ± 0.1651i
-2.6975 ± 2.7526i -6.2055
-6.7843 ± 2.3526i -5.1943
-5.4210 ± 0.6805i -5.5028
-1.2180 -1.2189

-0.3585

Remember, the LQG/LTR compensator is a 2x2 transfer function

matrix. Again, it is seen from the transmission zeros that the

LQG/LTR compensator is attempting to invert the plant. The

unstable spiral mode is, in effect, being mirrored by the zero at

s=-0.3585. It can be seen from the closed loop time response

that LQG/LTR was fairly successful in canceling unwanted system

dynamics.

The loop shapes of the transfer function, G(s)K(s), for both

systems are given in Figure 6.9. Notice that the LQG approach

6.21



produces a much better loop shape. Both loop shapes, however, do

not have smooth crossover transitions. The phase margins for the

two designs are as follows:

Method PM
LQG/LTR ± 13°
Classical ± 200

Neither design has an adequate phase margin.

LQG(-) vs Classical(--) Loop Shape for Yaw Rate Controller
1 5 0 . . . . . . . . .. . . .. . .
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o  
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Figure 6.9. G(s)K(s) Loop Shape Comparisons for the Roll Rate
Controllers.

Since the strongpoint of the LQG/LTR controller is to

provide a coordinated turn, the sideslip time responses to a unit

step yaw rate command are compared in Figure 6.10 for both

designs. For maintaining zero sideslip, the LQG/LTR compensator

is a far superior yaw rate controller design.
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Figure 6.10. Comparison of Closed Loop Sideslip Response for the

Yaw Rate Controllers.

The LQG/LTR approach produces the better system design.

Both sideslip and yaw rate are regulated in this design, as

opposed to only yaw rate in the classical approach. The LQG/LTR

approach produces better overall closed loop time responses.

Also, the LQG/LTR approach has a better loop shape for both low

frequency tracking and high frequency noise rejection. However,

both designs had problems with the low frequency, lightly damped

dynamics of the open loop system. This is caused by the basic

layout of the Lambda vehicle. Good recovery was especially

difficult with this LQG/LTR design due to the non-minimum phase

of the open loop system.
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6.3. Conclusions and Recommendations

This section summarizes th- important conclusions that can

be drawn from the rate controller designs. It also provides

recommendations on how to proceed with the given designs.

6.3.1. Conclusions

The following conclusions should be noted:

1. The rate controller design problem for the Lambda URV offered

an excellent opportunity for comparing classical and LQG/LTR

design methodologies. The pitch rate controller comparison in

Section 6.2.1 vividly illustrates the differences in the two

approaches. Although the classical design approach offers more

insight to the actual dynamics of the open loop plant and

compensator through root locus techniques, the LQG/LTR approach

offers a much more structured approach that allows the designer

to directly address system performance, robustness, and control

usage.

2. Compensator complexity is a key issue in any design. LQG/LTR

will always produce a compensator that is of the same order as

the open loop plant. By their nature, designs using classical

techniques will be relatively simple. For systems whose open

loop dynamics are well behaved, classical approaches to

controller design should be thoroughly examined before more

complicated methods are attempted. However, if undesirable open

loop dynamics are the problem (lightly damped/low frequency

/unstable poles or zeros), then the LQG/LTR approach of plant
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inversion and structured placement of closed loop dynamics will

provide the engineer an effective design tool.

3. Although Lambda's flight envelope is fairly benign, the

performance of the final rate controller designs (except for the

classical roll rate controller), was enhanced through gain

scheduling. Since plant inversion is fundamental to the LQG/LTR

approach, accurate state estimation by the Kalman filter is a

necessity. Thus, scheduling the Kalman filter gains always

improved compensator performance.

4. Most of the problems encountered in finding effective

controller designs stemmed from the basic design and layout of

the Lambda URV. The performance of the pitch rate controllers

were severely degraded by the slow elevator actuators used on

Lambda. The yaw rate controller designs were plagued by the

lightly damped, very low frequency zeros of the open loop plant.

The open loop dynamics for the roll rate controller were well

behaved (an unstable spiral mode is not uncommon).

5. From the comparisons presented in this chapter, the following

significant features of the LQG/LTR design methodology are

highlighted:

e LQG/LTR allows the designer to specify system performance

and uncertainty informatirn in the frequency domain.

e LQG/LTR offers a shructured approach that allows the

designer to trade between system performance, robustness, and

control usage concurrently.

* Lightly damped/low frequency poles or zeros in the open
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loop system cause problems in trying to obtain good closed loop

time response performance.

* LQG/LTR will always produce a compensator of the same

order as the open loop plant. Simpler compensators could be

obtained through model reduction techniques.

* Since plant inversion is fundamental to LQG/LTR, good

Kalman filter performance is essential. Gain scheduling is one

method to obtain good Kalman filter performance. Other

techniques such as parameter estimation and multiple model

adaptive estimation are discussed in Reference 6.4.

6.3.2. Recommendations

The following recommendations are noted:

1. The implementation of faster control actuators on the Lambda

URV should be strongly considered. The slow servo dynamics

significantly degrade the performance of all rate controller

designs no matter what methodology is used.

2. For a remotely piloted vehicle, attitude control is a more

solid choice for the flight control system. Rate controller

designs are better suited for conditions in which the pilot feels

the rates acting upon the airplane and can provide command inputs

accordingly. The pilot of a remotely piloted vehicle is much

more comfortable providing attitude command inputs to the flight

control system than he is in trying to anticipate appropriate

rate commands. Also, closed loop performance of attitude

controllers can be directly related to levels of flying quality
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through MIL-STD-1797A.

3. All the LQG/LTR rate controllers, as well as the classical

roll rate controller, are solid starting points for designs to be

actually implemented into the Lambda URV. Before proceeding,

improvements to the performance of the Kalman filter designs, by

feeding back all available state measurements, should be

investigated. Also, model order reduction of the compensators

should be considered. A brief investigation into reducing the

order of the LQG/LTR pitch rate compensator revealed that

removing 3 states from the compensator did not significantly

affect overall closed loop performance. Similar analysis for the

LQG/LTR roll rate and yaw rate controllers showed that 4 states

in each of these compensators could be removed without

significant closed loop performance degradation.

4. The LQG/LTR controllers developed in this thesis were all

regulator designs. Figure 6.11, adapted from Reference 21,

depicts a command generator tracker (CGT) with a regulator. This

set-up seeks a feedback control law that drives perturbations

from the ideal plant trajectory to zero. Thus for Lambda, the

set of desired closed loop time responses given in Figure 6.1

could be used to define ideal trajectories for the command

generator tracker. This approach, however, was not pursued any

further. It was felt that the slow servo dynamics would

significantly degrade the performance of a command generator

tracker just as they degraded the performance of the regulator

designs. Thus, the increase in controller complexity using a
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command generator tracker approach could not be justified.

-0-CGT xda x K" disturbances

+ u G x j

(~K G2

8x =x -x ideal
bu - u - u ideal

Figure 6.11. Command Generator Tracker (CGT) Block Diagram.
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Appendix A:

Flight Test Data Example

This appendix presents the data measurements for the first
pitch doublet maneuver (half flaps, full throttle) on the first day
of flight testing.
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Figure A.9. Yaw Rate.
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Figure A.11. Altitude.
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Figure A.19. Left and Right Elevator Deflection.
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Figure A.20. Pitch Command and Left Elevator Deflection.
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Figure A.21. Left and Right Rudder Deflection.

Left j-) and Right (-)Flap. PDHF,FT 11/20/90
17.4

17

16.8-

16.6~

16. 4 -N '* ~kN

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

Figure A.22. Left and Right Flap Deflection.
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Appendix B:

Maximum Likelihood Parameter Estimation Examples

This appendix presents examples of the data fit achieved from
the maximum likelihood iterations for each type of flight test
maneuver.
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Figure B.1. Angle of Attack Data Fit for the First Pitch Doublet
Maneuver (half flaps, full throttle) on the First Flight Test.
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Figure B.l. Angle ofattac Data Fit for the First Pitch Doublet
Maneuver (half flaps, full throttle) on the First Flight Test.
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Figure B.2. Pitch Rate Data Fit for the First Pitch Doublet
Maneuver (half flaps, full throttle) on the First Flight Test.
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Figure B.3. Roll Rate Data Fit for the First Roll Doublet
Maneuver (zero flaps, full throttle) on the First Flight Test.
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Figure B.4. Angle of Sideslip Data Fit for the First Yaw Doublet
Maneuver (zero flaps, full throttle) on the First Flight Test.
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Figure B.5. Yaw Rate Data Fit for the First Yaw Doublet Maneuver
(zeros flaps, full throttle) on the First Flight Test.
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Appendix C:

Comparison of Actual Flight Test Data
to the State Vector Time Responses Estimated

by the Final Small Perturbation Model.

This appendix presents examples of the final small
perturbation model's approximation of the state vector time
responses compared to the actual flight test data for each type of
flight test maneuver conducted. All data presented will be for the
doublet maneuvers at zero flaps and full throttle from the first
day of flight testing.
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Figure C.1. Actual and Predicted Speed Time History for the
Pitch Doublet Maneuver (zero flaps, full throttle).
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Figure C.2. Actual and Predicted Angle of Attack Time History
for the Pitch Doublet Maneuver (zero flaps, full throttle).
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Pitch Rate Time Response, PD.ZF,F7 11/20/90
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Figure C. 3. Actual and Predicted Pitch Rate Time History for the
Pitch Doublet Maneuver (zero flaps, full throttle).
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Figure C.4. Actual and Predicted Pitch Angle Time History for
the Pitch Doublet Maneuver (zero flaps, full throttle).
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'Q ~ Angle of Sideslip Time Response, PD,J:,FT 11/20/90
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Figure C.5. Actual and Predicted ARole oRaidei Time Historyth
frePitch Doublet M"uver (zero flaps, full throttle).
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Roll Attitude Time Response, PD.ZF,FT 11/20/90
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Figure C.7. Actual and Predicted Roll Attitude Time History for
the Pi~tch Doublet Maneuver (zero flaps, full throttle).
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Figure C.8. Actual and Predicted Yaw Rate Time History for the
Pitch Doublet Maneuver (zero flaps, full throttle).
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Heading Angle Time Response, PDZF,FT 11/20/90
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Figure C.9. Predicted Heading Angle Time History for the Pitch
Doublet Maneuver (zero flaps, full throttle).
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Speed Time Response. RD.ZF,Fr 11/20/90
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Figure C.10. Actual and Predicted Speed Time History for the
Roll Doublet Maneuver (zero flaps, full throttle).
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Pitch Rate Time Response. RDZF.FI 11/20/90
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Figure C.12. Actual and Predicted Pitch Rate Time History fc'
the Roll Doublet Maneuver (zero flaps, full throttle).
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Figure C.13. Actual and Predicted Pitch Attitude Time History
for the Roll Doublet Maneuver (zero flaps, full throttle).
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Figure C.14. Actual and Predicted Angle of Sidesilp Time History
for the Roll Doublet Maneuver (zero flaps, full throttle).
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figure C.15. Actual and Predicted Roll Rate Time History for the
Roll Doublet Maneuver (zero flaps, full throttle).
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Roll Attitude Time Response, RD.ZF.FT 11/20/90
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Figure C.l6. Actual and Predicted Roll Attitude Time History for
the Roll Doublet Maneuver (zero flaps, full throttle).
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Figure C.17. Actual and Predicted Yaw Rate Time History for the
Roll Doublet Maneuver (zero flaps, full throttle).
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Heading Angle Time Response, RDZF.FT 11/20/90
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Figure C.18. Predicted Heading Angle Time History for the Roll
Doublet Maneuver (zero flaps, full throttle).
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Speed Time Response, YD.ZFFT 11/20/90
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Figure C. 19. Actual and Predicted Speed Time History for the Yaw
Doublet Maneuver (zero flaps, full throttle).
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Figure C.20. Actual and Predicted Angle of Attack Time History
for the Yaw Doublet Maneuver (zero flaps, full throttle).
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W Pitch Rate Time Response, YD,ZF,FT 11/20/90
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Figure C.21. Actual and Predicted Pitch Rate Time History for
the Yaw Doublet Maneuver (zero flaps, full throttle).

Pitch Attitude Time Response, YD,ZFFT 11/20/90
60

50 0

04 o

.30

=' 20-

a- 0

0.

-10[

7; 0 1 2 3 4 5 6 7 8 9 10

Time (mec)

Figure C.22. Actual and Predicted Pitch Attitude Time History-
for the Yaw Doublet Maneuver (zero flaps, full throttle).
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Angle of Sideslip Time ReRponse, YD,ZF.FT 11/20/90
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Figure C.23. Actual and Predicted Angle of Sideslip Time History

for the Yaw Doublet Maneuver (zero flaps, full throttle).
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Roll Attitude Time Response. YD.ZF.PI 11/20/90
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Figure C.25. Actual and Predicted Roll Attitude Time History for
the Yaw Doublet Maneuver (zero flaps, full throttle).
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Figure C.26. Actual and Predicted Yaw Rate Time History for the
Yaw Doublet Maneuver (zero flaps, full throttle).
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Heading Angle Time Response, YD,ZF,FT 11/20/90
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Figure C.27. Predicted Heading Angle Time History for the Yaw
Doublet Maneuver (zero flaps, full throttle).
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Appendix D:

Linear, State Space, Small Perturbation
Matlab Model: DERCALC.M.

This appendix presents the Matlab program, DERCALC.M, that
calculates the linear, state space, small perturbation model (both
longitudinal and lateral directional) for Lambda. Center of
gravity location, trimmed flight speed, dynamic pressure, vehicle
weight, and trimmed pitch angle are the only inputs required.



% This macro calculates the longitudinal and lateral-
% directional state space equations of motion for the
% Lambda URV given Xcg, U1, q1, W and theta.

%Input: X=[Xcg,Ul,ql,W,theta)

where, Xcg =inches

U1 feet/second
q1 pounds/sq foot
W =pounds

theta = degrees

%outputs:

Clong=[CMu, C~a, C~ad, CMq, CLu, Cla, CLad, CLq, CDa, CDu,
CLde,CDde,CMde,CLdf,CDdf,CMdf]'

Clat=[Clb,Clp,Clr,Clda,Cldr, Cnb,Cnp,Cnr,Cnda,Cndr,
Cyb,Cyp,Cyr,Cyda,CydrVl

Dlong =corresponding vector of dimensional derivatives for
Clong

Mlat =corresponding vector of dimensional derivatives f or
Clat

Along =A matrix for longitudinal. equations of motion

Alat = A matrix for lateral-directional equations of motion

Blong =B matrix for longitudinal equations of motion

Blat = B matrix for lateral-directional equations of motion

CMu=O;
CMa=0.326643*X(l, 1) -16.5189;
CMad=0.238235*X(l, l)-7.8977;
CMq=O.628420*X(l, 1) -45.0582;
CLu=-0.0001719*X(l, l)+O.01518;
CLa=5.820;
CLad=-O.03838*X(l, l)+3.83508;
CLq=-O.65202*X(l, l)+37.8884;
CDa=O;
CDu=0;
CLde=O.2908;
CDde=0;
CMde=0.013464*X(l, 1) -1.48039;
CLdf=1.419;
CDdf=0. 08489;
CMdf=0.070932*X(l, 1) -3.63838;
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Clongl=[CMu, CMa, C~ad, CMq, CLu, CLa, CLad, CLq, CDa, CDu];
Clong2=[CLde,CDde,CMde,CLdf,CDdf,CMdf];
Clong=[Clongl,Clong2)';

Clb=-O. 01451;
Clp=-0.5538;
Clr=O.087 63;
Clda=0.2608;
Cldr=0.000213*X(1, 1)-O.00783;
Cnb=-0.00038*X(1, 1)+O.07834;
Cnp=-O. 03601;
Cnr=O.003087*X(1,1) -0.31072;
Cnda=-0.013 68;
Cndr=0.001633*X(1,1) -0.15208;
Cyb=-0 .4372;
Cyp=-0.00 1600;
Cyr=-O.00424*X(1,1)+O.46047;
Cyda=0;
Cydr=0.28 65;
Clat=[Clb,Clp, Clr,Clda,Cldr,Cnb,Cnp,Cnr, Cnda,Cndr,Cyb,Cyp, Cyr,....

Cyda,Cydr]';

%Calculation of Dimensional Derivatives

Dlong=[Mu,Ma,Mad,Mq,Zu,Za,Zad,Zq,XaXu,Zde,Xde,Mde,Zdf...
Xdf,MdfJ'

Dlat=[Lb,Lp,Lr,Lda,Ldr,Nb,Np,Nr,Nda,?Jdr,Yb,Yp,Yr,Yda,YdrI

xcg=X(1,l);
u=X (1, 2);
q=X (1, 3);
m=X(1,4)/32.174;
s=21.1;
c=1. 51;
b=14. 07;
Ixx=32 .502;
Iyy=26.666;
Izz=40.939;
Ixz=0.5922;
CLl=X(l,4)/(q*s);
CD1=O.027;
CM1=0.0;
Al=Ixz/Ixx;
B1=Ixz/Izz;
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Mu=q*s*c* (CMU+2*CM1)/ (Iyy*u);
Ma=q*s*c*CMa/Iyy;
Mad=q*s*c*c*CMad/ (2*Iyy*u);
Mq=q*s*c*c*CMqJ(2*Iyy*u);
Zu=-q*s* (CLu+2*CL1)/ (m*u);
Za=-q*s* (CLa+CD1)/m;
Zad=-q*s*c*CLad/ (2*m*u);
Zq=-q*s*c*CLcqJ(2*m*u);
Xu=-q*s* (CDu+2*CD1)/ (m*u);
Xa=-q*s* (CDa-CL1)/m;
Zde=-q*s*CLde/m;
Xde=-q*s*CDde/m;
Mde=q*s*c*CMde/Iyy;
Zdf=-q*s*CLdf/m;
Xdf=-q*s*CDdf/m;
Hdf=q*s*c*CMdf/Iyy;
Dlong=(Mu,Ma,Mad,Mq,Zu,Za,Zad,ZqXa,Xu, Zde,Xde,Mde,Zdf,Xdf,Mdf]';

Lb=q*s*b*Clb/Ixx;
Lp=q*s*b*b*Clp/ (2*Ixx*u);
Lr=q*s*b*b*Clr/ (2*Ixx*u);
Lda=q*s*b*Clda/Ixx;
Ldr=q*s*b*Cldr/Ixx;
Nb=q*s*b*Cnb/Izz;
Np=q*s*b*b*Cnp/ (2*Izz*u);
Nr=q*s*b*b*Cnr/ (2*Izz*u);
Nda=q*s*b*Cnda/Izz;
Ndr=q*s*b*Cndr/Izz;
Yb=q*s*Cyb/m;
Yp=q*s*b*Cyp/ (2*m*u);
Yr=q*s*b*Cyr/ (2*m*u);
Yda=q*s*Cyda/m;
Ydr=q*s*Cydr/m;
Dlat=[Lb,Lp,Lr,Lda,Ldr,Nb,Np,Nr,Nda,Ndr,Yb,Yp,Yr,Yda,Ydr]';

%Calculation of the Longitudinal A and B matrices

theta=X(1,5)/57.29578;
Along=[Xu,Xa,0,-32.174*cos(theta);

Zu/(u-Zad) ,Za/(u-Zad) ,(u+Zq)/(u-Zad) ,-32.174*sin(theta);
Mu+Mad*Zu/(u-Zad) ,Ma+Mad*Za/(u-Zad),..
Mq+Mad*(u+Zq)/(u-Zad) ,-Mad*32.174*sin(theta);
0,0,1,0);

Blong= [Xde, Xdf;
Zde/ (u-Zad) ,Zdf/ (u-Zad);
Mde+Mad*Zde/ (u-Zad) ,Mdf+Mad*Zdf/ (u-Zad);
0,0];

D. 4



%Calculation of the Lateral-Directional A and B matrices

BA=l-Bl*Al;
Alat=[Yb/u,Yp/u,32.174*cos(theta)/u,Yr/u-l,0;

(Lb+Al*Nb)/BA, (Lp+Al*Np)/BA,0, (Lr+Al*Nr)/BA,0;
0,1,0,0,0;
(Nb+Bl*Lb)/BA, (Np+Bl*Lp)/BA,0, (Nr+Bl*Lr)/BA,0;
0,0,0,1,0];

Blat= [Yda/u, Ydr/u;
(Lda+Al*Nda)/BA, (Ldr+Al*Ndr)/BA;
0,0;
(Nda+Bl*Lda)/BA, (Ndr+Bl*Ldr)/BA;
0,0];
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Appendix E:

Wind Dynamics Model

This appendix provides a brief summary of the wird dynamics
model used for the controller Cesigns developed in Chapter 5.



The wind model implemented into the controller models was

taken from Appendix A of Reference E.1. This model is a reasonable

approximation to the von Karman model and the Haines approximation.

The power Spectral density of the wind disturbance is given

by:
by = (a217) (L/Vo) [4/(4+(L /V) 2] 

(E.)

where, L = suale length, 200 ft at sea level

Vo  speed of the aircraft, ft/sec

w frequency, rad/sec

a constant, 6 ft/sec

To obtain a state variable model, a normalized state variable,

w(t), is used as the wind state for both longitudinal and lateral-

directional dynamics. The state variable w(t) is the output of a

first-order system driven by continuous white noise .(t) with zero

mean.

w(t) = -2(V/L)w(t) + 2a/(7rLVo) 1/2 (t) (E.2)

where, E[(t)]=O (E.3)

E[E (t) E(,r) ] =S(t-7r) (E.4)

For the longitudinal dynamics, the wind state w(t) influences

the dynamics in the same manner as the angle of attack. Thus, in

the longitudinal state equations, the wind state enters the

equations as follows:

u(t) = . . + a w(t)

dj(t) = . . . + a 2w(t), etc.

where a1 , a 2 , ... car be found from 'he open-loop longitudinal A

.aatrix. For the lateral dynamics w(t) influences the dynamics in
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the same manner as sideslip angle. Thus, in the lateral-

directional state equations, the wind state enters the equations as

follows:

P(t) = . . . + a 1w(t)

p(t) = . . . + a 2w(t), etc.

where a,, a2, ... can be found from the open-loop lateral-

directional A matrix.

Given the above, the following was used as the baseline wind

model for Lambda:

§g(a)=9167/V[4 + (200/V 0 )2 -1 (E.5)

w(t)=-(V/l00)w(t) + 0.4787Vo 1/2E(t) (E.6)

Reference:

E.1. Athans, Micheal; Castanon, David; Dunn, Keh-Ping; Green,
Christopher; Lee, Wing; Sandell, Nils; Willsky, Alan; "The
Stochastic Control of the F-8C Aircraft Using a Multiple Model
Adaptive Control (MMAC) Method -- Part I: Equilibrium Flight".
IEEE Transactions on Automatic Control, Volume AC-22, Number 5,
October 1977.
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Appendix F:

Rate Controller Matlab Models

This appendix presents the Matlab macros for the final rate
controller designs presented in Chapter 5. Each macro calculates
the closed loop rate and control surface time responses to a unit
step rate command given the trimmed flight conditions as inputs.



ProQram: PRATCONV.M

function [pstep,destep,xstep,gml,gmh,pm]=pratconv(X)

% Pitch Rate Flight Controller Design For Lambda

% The only input required is flight condition vector, X:
X=[Xcg,U,q,W,theta]

in inches, fps, psf, lbs, and deg, respectively.

% The outputs are the pitch rate and elevator time respon is to a
% unit step pitch rate command and the design's gain and phase
% margins. Gain scheduling is accomplished for the Kalman filter
% gains as a function of speed.

% Form the open loop, augmented, and doubly augmented systems

[Ap,Bp,Cp,Dp]=formq(X);
Aa=[Ap,Bp;zeros(Cp),O];Ba=[zeros(Bp);l];Ca=[Cp,O];Da=Dp;
A=[Aa,Ba;zeros(Ca),O];B=[zeros(Ba);l];C=[Ca,O];D=Da;

% Compensators designed for the following:
%
% i/u=100, q=5500, rho=50,000,000, rho/q=9,090
%
% Kalman filter designed for FC#3:
Kfh=[-0.0024,0.9747,7.7262,1,-2.3130,-0.1562,-3.6393,-10]';
%
% Kalman filter designed for FC#4:
Kfl=[-0.0211,i.0498,5.7190,i,-4.2724,-0.0982,-5.7255,-i0]';
%
% Gain schedule on the Kalman filter gains:
%
u=X(l,2);
delta=(u-76)/(168.9-76);
Kf=Kfl+delta*(Kfh-Kfl);
%
% Regulator designed for FC#3:
Kc=[-0.0781,0.0072,0.0251,0.0385,-0.0558,-0.2936,2.2065,2.1007];
%
% Calculate the required matrices:
%
Acl=[A,-B*Kc;Kf*C,A-B*Kc-Kf*C];
Bcl=[zeros(B) ;-Kf];
Ccl=[C,zeros(C)];
Ccll=[zeros(C),-Kc);
Dcl=O;
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Ao=[A, B*Kc;zeros (A) ,A-B*Kc-Kf*C];
Bo= [zeros (B) ; Kf ];
Co= [C, zeros (C)];
Do=O;
As=Ao-Bo*Co;
Bs=Bo;
Cs=-Co;
Ds=l;

%Calculate the singular values of the sensitivity:

w=logspace(-3,3,lOOO);
sv=s igiia (As,Bs, Cs, Ds,1, w)
infnm=max(max(sv));
infs=20*loglO (infnm);

%Calculate the margins:

inf= JOA (infs/20);
gml=-20*loglO(l+l/inf);
gmh=-20*loglO(l-l/inf);
pm=2*asin(1/(2*inf) )*J18J/pi;

%Calculate the time responses:

T=[0: 0. 01: 10] ;
[gstep,xstep]=step(Acl,Bcl,Ccl,Dcl,l,T);
destep=step(Acl,Bcl,Ccll,Dcl,l,T);

%Plot the time responses:

tl='time, sec';
t2='rate, deg/sec';
t3='deflection, deg';
plot(T,qstep) ,xlabel(tl) ,ylabel(t2) ,title('q to qstep')
pause
plot(T,destep) ,xlabel(tl) ,ylabel(t3) ,title('de to q step')
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Program: RRATCONV.M

function [pcl,dclp,gml,gmh,pm]=rratconv(X)

%Roll Rate Flight Controller Design For Lambda

%The only input required is flight condition vector, X:
X=[Xcg,U,q,W,theta]

in inches, fps, psf, lbs, and deg, respectively.

%The outputs are roll rate, sideslip, aileron deflection and
%rudder deflection time responses to a unit step roll rate
%command. The design's gain and phase margins are also given.
%Gain scheduling is accomplished for the Kalman filter gains as
%a function of flight speed.

%Form: [pcl,dclp,gml,ginh,pm]=rratconv(X)

%Form the open loop, augmented, and doubly augmented systems

[Ap,Bp,Cp,Dp]=formp(X);
Aa=EAp,Bp;zeros(2,9)];Ba=[zeros(7,2) ;eye(2)] ;Ca=[Cp,zeros(2,2)];
Da=Dp;
A=[Aa,Ba;zeros(2,1l) ];B=-[zeros(9,2) ;eye(2)]I;C=[Ca,zeros(2,2) ];D=Da;

%Compensators designed for the following:

1/u=100, q=100, rho=lOO,OOO, rho/q=l,OOO

%Kalman filter designed for FC#4:
Kfl=r4.8762,-3.3391e-2,8.5897e-8,-l.1771el,5.1452e-1,9.9592,...

l.2273e-l,6.3299e-l,l.1562el,6.4546e-l,9.9791; ...
-3.3391e-2,7.8567,1,5.2452e-3,3.4439,-3.4389e-l,1.758le-1 ....
5.1064,-4.4516e-1,9.9791,-6.4546e-l]';

%Kalman filter designed for FC#t3:
Kfh=[5.4431,-2.5402e-2,1.0411e-8,-l.5306el,4.5480e-1,6.4415 ....

5.2863e-2,6.0455e-l,8.0256,8.2724e-l,9.9657; ...
-2.5402e-2,1.1772el,l,-6.9092e-2,l.9071,-2.2024e-l,....
9.6412e-2,3.4052,-3.4430e-l,9.9657,-8.2724e-l]';

%Regulator design from the midpoint flight condition:
Kc=[l.2781e-2, 3.2606e-3,5.6037e-3,8.4716e-4,5.2573e-2,-3.471e-3,..

-7.5810e-4,l.6477,-6.7330e-2,1.8151,-2.9168e-2; ...
-4.1613e-3,l.4065e-3,7.8684e-3,2.2826e-3,l.0068e-2 ....
-2.*4072e-3 ,-1. 4163e-2 ,-6. 8991e-3 ,2. 6673e-l, -2. 9168e-2, ....
7.2980e-1];
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% Gain schedule on the Kalman filter gains:

u=X(l,2) ;delta=(u-76)/(168.9-76);
Kf=Kfl+delta* (Kfh-Kf 1);

%Calculate the required matrices:

Acl=[A, -B*Kc;Kf*C,A-B*Kc-Kf*C];
Bcl=[zeros (B) ;-Kf];
Ccl=[C,zeros(C)];
CclK=[zeros(C) ,Kc];
Dcl=zeros(2,2);
Ao= [A, B*Kc; zeros (A) ,A-B*Kc-Kf*C];
Bo=[zeros(B) ;Kf];
Co= [C, zeros (C)]I;
Do=D;
As=Ao-Bo* Co;
Bs=Bo;
Cs=-Co;
Ds=eye(2);

%calculate the singular values of the sensitivity:

w=logspace(-3, 3,1000);
sv=sigma(As,Bs,Cs,Ds,l,w);
infnm--max(max(sv));
infs=20*loglO (infnm);

%Calculate the margins:

inf=l OA (infs/20);
gml=-20*loglO(l+l/inf);
gmh=-20*loglO (l-l/inf);
pm=2*asin(l/(2*inf) )*180/pi;

%Calculate the time responses:

T=[0: 0. 01: 10] ;
[pcl,xclp]=step(Acl,Bcl,Ccl,Dcl,2,T);
[bcl,xclb]=step(Acl,Bcl,Ccl,Dcl, l,T);
dclp=step(Acl,Bcl,CclK,Dcl,2,T);
dclb=step(Acl,Bcl,CclK,Dcl,l,T);

%Plot the time responses:

tl='time, sec' ;t3='deflection, deg';
t4='rate, deg/sec and deflection, deg';
plot(T,pcl) ,xlabel(tl) ,ylabel(t4) ,title( 'Response to p Command')
pause
plot (T,dclp) ,xlabel(tl) ,ylabel(t3)
title('Control Response to p Command')
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Prociram YRATCONV.M

function [rcl,dclr,gml,gmh,pm]=yratconv(X)

%Yaw Rate Flight Controller Design For Lambda

%The only input required is flight condition vector, X:
X=[Xcg,U,q,W,theta]

in inches, fps, psf, lbs, and deg, respectively.

%The outputs are yaw rate, roll angle, aileron deflection and
%rudder deflection time responses to a unit step yaw rate
%command. The design's gain and phase margins are also given.
%Gain scheduling is accomplished for the Kalman filter gains as
%a function of flight speed.

%Form: [rcl,dclr,gml,gmh,pm]=yratconv(X)

%Form the open loop, augmented, and doubly augmented systems

(Ap,Bp,Cp,Dp]=formr(X);
Aa=[Ap,Bp;zeros(2,9)];Ba=[zeros(7,2);eye(2)];Ca=[Cp,zeros(2,2)];
Da=Dp;
A=[Aa,Ba;zeros(2,11)];B--[zeros(9,2);eye(2)];C=[Ca,zeros(2,2)];D=Da;

%Compensators designed for the following:

1/u=1000, q=1000, rho=250,OOO, rho/q=250

%Kalman filter designed for FC#4:

4.0555e-l,2.1724el,-4.0642,3.1052el,-5.9806; ...
-l.1759,-4.6276,-4.1854e-1,8.5273,-2.3618,-l.2541e1 ....
-6.6314e-l,-3 .4566,-1.7325e1,-5.9806,-3. 1052e1]';

%Kalman filter designed for FC#3:
Kfh=(6.5706e-2,7.9729el1l.2614e1,-5.8438e-l,l.0510e1,-2.7698,...

1.7557e-1,1.5634el,-4.0222,3.0550e1,-8.1682; ...
-l.1145,-9.3266,-5.8438e-l,1.3195el,-1.7524,-6.7477,....
-3.8257e-l,-3.1244,-l.1095el,-8.1682,-3.0550el]';

%Regulator design from the FC#3:
Kc=[-3.5338e-1,2.6232e-1,1.9493,2.3119e-1,3.7852,-4.3397e-1,....

-4.0278e-2,l.5242e1,-2.3412e-l,5.5184,-l.7414e-l; ...
-1.3977,-1.0496e-l,-6.3275e-1,5.6180e-l,-l.1872,-1.1007,....
6.5066e-l,-l.1797,3.3968,-l.7414e-l,2.6006];
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%Gain schedule on the Kalman filter gains:

u=X(1,2) ;delta=(u-76)/(168.9-76);
Kf=Kfl+delta* (Kfh-Kfl);

%Calculate the required matrices:

Acl=[A, -B*Kc;Kf*C,A-B*Kc-Kf*C];
Bcl=[zeros(B) ;-Kf);
Ccl=[C,zeros (C));
CclK=[zeros(C) ,Kc];
Dcl=zeros(2,2);
Ao=[A,B*Kc;zeros (A) ,A-B*Kc-Kf*C];
Bo=[zeros(B) ;Kf);
Co=[C,zeros (C));
Do=D;
As=Ao-Bo*Co;
Bs=Bo;
Cs=-Co;
Ds=eye(2);

%Calculate the singular values of the sensitivity:

w=logspace (-3 ,3, 1000) ;
sv=sigma(As,Bs,Cs,Ds,l,w);
infnm=max(max(sv));
infs=20*loglO (infnm);

%Calculate the margins:

inflOA (infs/20);
gml=-20*loglO (l+l/inf);
gih=-20*loglO(l-l/inf);
pm=2*asin(1/ (2*inf) )*180/pi;

%calculate the time responses:

T=[0: 0. 01: 10)];
[rcl,xclr)=step(Acl,Bcl,Ccl,Dcl,2,T);
[pcl,xclp]=step(Acl,Bcl,Ccl,Dcl, l,T);
dclr=step(Acl,Bcl,CclK,Dcl,2,T);
dclp=step (Adl,Bcl, Cc1K, Dcl,1, T);

%Plot the time responses:

tl='time, sec' ;t3='deflection, deg';
t4='rate, deg/sec and deflection, deg';
plot(T,rcl) ,xlabel (tl) ,ylabel (t4) ,title( 'Response to r Command')
pause
plot (T,dclr) ,xlabel (ti) ,ylabel (t3)
title('Control Response to r Command')
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Program: YRATCONVB.M

function [rcl,dclr,gml,gmh,pm]=yratconvb(X)

%Yaw Rate Flight Controller Design For Lambda

%The only input required is flight condition vector, X:
X=[Xcg,U,q,W,theta]

in inches, fps, psf, lbs, and deg, respectively.

%The outputs are yaw rate, roll angle, aileron deflection and
%rudder deflection time responses to e unit step yaw rate
%command. The design's gain and phase margins are also given.
%Gain scheduling is accomplished for the Kalman filter gains as
%a function of flight speed.

%Form: [rcl,dclr,gml,gmh,pm]=yratconvb(X)

*Form the open loop, augmented, and doubly augmented systems

[Ap,Bp,Cp,Dp]=formr2(X);
Aa=[Ap,Bp;zeros(2,9)];Ba=[zeros(7,2);eye(2)];Ca=[Cp,zeros(2,2)];
Da=Dp;
A=[Aa,Ba;zeros(2,1l) );B--[zeros(9,2) ;eye(2)]3;C=[Ca,zeros(2,2)]3;D=Da;

*Compensators designed for the following:

1/u=100, q=10, rho=lO,OOO, rho/q=lOOO

*Kalman filter designed for FC#4:
Kfl=[5.1598,5.4167el,3.3939el1.9237e-1,1.3799el,-1.5537,...

l.1773e-l,l.5606el,-l.3997,9.9511,9.8782e-l; ...
1.9237e-1,1.6541el1.1064el,5.7109,3.6141,-6.9404 ....
-l.5679e-l,3.7938,-8.5124,9.8782e-l,-9.9511]';

%Kalman filter designed for FC#3:
Kfh=[4.9195,1.167le2,7.4366el,3.4749e-1,1.1855el,-8.9428e-l,....

4.8562e-2,l.3594el,-4.6537e-l,9.6064,2.7779; ...
3.4749e-l,5.9179el,3.3031el,8.4798,5.6622,-4.7502,....
-8.1501e-2,6.1893,-6.2006,2.7779,-9.6064] ';

*Regulator design from the FC#3:
Kc=[-3.3862e-2,3.7874e-3,5.4696e-2,7.5498e-2,7.951le-2,....

-l.9743e-l,l.5901e-l,2.3190,l.6244e-l,2.1511,-l.0286e-l; ...
-2.6598e-l,-3.6540e-2,-2.058le-l,l.8715e-l,-4.5083e-l,...
-4.4425e-l,4.4656e-l,-5.3354e-1,1.0663,-1.0286e-l,1.4567];
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%Gain schedule on the Kalman filter gains:

u=X(l,2) ;delta=(u-76)/(168.9-76);
Kf=Kfl+delta* (Kfh-Kf 1);

%Calculate the required matrices:

Acl= [A,-B*Kc ;Kf*C, A-B*Kc-Kf *C];
Bcl=[zeros(B) ;-Kf);
Ccl=[C, zeros (C)];
CclK=[zeros (C) ,Kc];
Dcl=zeros(2,2);
Ao= [A, B*Kc; zeros (A) ,A-B*Kc-Kf*C];
Bo= [zeros (B) ; Kf ];
Co=[C,zeros(C) 3;
Do=D;
As=Ao-Bo*Co;
Bs=Bo;
Cs=-Co;
Ds=eye(2);

%Calculate the singular values of the sensitivity:

w=logspace (-3,3,1000);
sv=sigma(As,Bs,Cs,Ds,lw);
infnm=max(max(sv));
infs=20*loglO (infnm);

%Calculate the margins:

inf=l OA (infs/20);
gml=-20*loglO(l+l/inf);
gnh=-20*loglo(l-l/inf);
pm=-2*asin(l/(2*inf) )*180/pi;

%Calculate the time responses:

T=[0: 0. 01: 10) ;
[rcl,xclr]=step(Acl,Bcl,Ccl,Dcl,2,T);
[bcl,xclb]=step(Acl,Bcl,Ccl,Dcl, l,T);
dclr=step(Acl,Bcl,CclK,Dcl,2,T);
dclb=step(Acl,BclCclK,Dcl,l,T);

%Plot the time responses:

tl='time, sec' ;t3='deflection, deg';
t4='rate, deg/sec and deflection, deg';
plot(T,rcl) ,xlabel(tl) ,ylabel(t4) ,title( 'Response to r Command')
pause
plot(T,dclr) ,xlabel(tl) ,ylabel(t3)
title('Control Response to r Command')
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